Really-amin's picture
Upload 325 files
b66240d verified
raw
history blame
43.1 kB
#!/usr/bin/env python3
"""
Crypto Data Aggregator - Admin Dashboard (Gradio App)
STRICT REAL-DATA-ONLY implementation for Hugging Face Spaces
7 Tabs:
1. Status - System health & overview
2. Providers - API provider management
3. Market Data - Live cryptocurrency data
4. APL Scanner - Auto Provider Loader
5. HF Models - Hugging Face model status
6. Diagnostics - System diagnostics & auto-repair
7. Logs - System logs viewer
"""
import sys
import os
import logging
from pathlib import Path
from typing import Dict, List, Any, Tuple, Optional
from datetime import datetime
import json
import traceback
import asyncio
import time
# Check for Gradio
try:
import gradio as gr
except ImportError:
print("ERROR: gradio not installed. Run: pip install gradio")
sys.exit(1)
# Check for optional dependencies
try:
import pandas as pd
PANDAS_AVAILABLE = True
except ImportError:
PANDAS_AVAILABLE = False
print("WARNING: pandas not installed. Some features disabled.")
try:
import plotly.graph_objects as go
from plotly.subplots import make_subplots
PLOTLY_AVAILABLE = True
except ImportError:
PLOTLY_AVAILABLE = False
print("WARNING: plotly not installed. Charts disabled.")
# Import local modules
import config
import database
import collectors
# ==================== INDEPENDENT LOGGING SETUP ====================
# DO NOT use utils.setup_logging() - set up independently
logger = logging.getLogger("app")
if not logger.handlers:
level_name = getattr(config, "LOG_LEVEL", "INFO")
level = getattr(logging, level_name.upper(), logging.INFO)
logger.setLevel(level)
formatter = logging.Formatter(
getattr(config, "LOG_FORMAT", "%(asctime)s - %(name)s - %(levelname)s - %(message)s")
)
# Console handler
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
# File handler if log file exists
try:
if hasattr(config, 'LOG_FILE'):
fh = logging.FileHandler(config.LOG_FILE)
fh.setFormatter(formatter)
logger.addHandler(fh)
except Exception as e:
print(f"Warning: Could not setup file logging: {e}")
logger.info("=" * 60)
logger.info("Crypto Admin Dashboard Starting")
logger.info("=" * 60)
# Initialize database
db = database.get_database()
# ==================== TAB 1: STATUS ====================
def get_status_tab() -> Tuple[str, str, str]:
"""
Get system status overview.
Returns: (markdown_summary, db_stats_json, system_info_json)
"""
try:
# Get database stats
db_stats = db.get_database_stats()
# Count providers
providers_config_path = config.BASE_DIR / "providers_config_extended.json"
provider_count = 0
if providers_config_path.exists():
with open(providers_config_path, 'r') as f:
providers_data = json.load(f)
provider_count = len(providers_data.get('providers', {}))
# Pool count (from config)
pool_count = 0
if providers_config_path.exists():
with open(providers_config_path, 'r') as f:
providers_data = json.load(f)
pool_count = len(providers_data.get('pool_configurations', []))
# Market snapshot
latest_prices = db.get_latest_prices(3)
market_snapshot = ""
if latest_prices:
for p in latest_prices[:3]:
symbol = p.get('symbol', 'N/A')
price = p.get('price_usd', 0)
change = p.get('percent_change_24h', 0)
market_snapshot += f"**{symbol}**: ${price:,.2f} ({change:+.2f}%)\n"
else:
market_snapshot = "No market data available yet."
# Get API request count from health log
api_requests_count = 0
try:
health_log_path = Path("data/logs/provider_health.jsonl")
if health_log_path.exists():
with open(health_log_path, 'r', encoding='utf-8') as f:
api_requests_count = sum(1 for _ in f)
except Exception as e:
logger.warning(f"Could not get API request stats: {e}")
# Build summary with copy-friendly format
summary = f"""
## 🎯 System Status
**Overall Health**: {"🟢 Operational" if db_stats.get('prices_count', 0) > 0 else "🟡 Initializing"}
### Quick Stats
```
Total Providers: {provider_count}
Active Pools: {pool_count}
API Requests: {api_requests_count:,}
Price Records: {db_stats.get('prices_count', 0):,}
News Articles: {db_stats.get('news_count', 0):,}
Unique Symbols: {db_stats.get('unique_symbols', 0)}
```
### Market Snapshot (Top 3)
```
{market_snapshot}
```
**Last Update**: `{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}`
---
### 📋 Provider Details (Copy-Friendly)
```
Total: {provider_count} providers
Config File: providers_config_extended.json
```
"""
# System info
import platform
system_info = {
"Python Version": sys.version.split()[0],
"Platform": platform.platform(),
"Working Directory": str(config.BASE_DIR),
"Database Size": f"{db_stats.get('database_size_mb', 0):.2f} MB",
"Last Price Update": db_stats.get('latest_price_update', 'N/A'),
"Last News Update": db_stats.get('latest_news_update', 'N/A')
}
return summary, json.dumps(db_stats, indent=2), json.dumps(system_info, indent=2)
except Exception as e:
logger.error(f"Error in get_status_tab: {e}\n{traceback.format_exc()}")
return f"⚠️ Error loading status: {str(e)}", "{}", "{}"
def run_diagnostics_from_status(auto_fix: bool) -> str:
"""Run diagnostics from status tab"""
try:
from backend.services.diagnostics_service import DiagnosticsService
diagnostics = DiagnosticsService()
# Run async in sync context
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
report = loop.run_until_complete(diagnostics.run_full_diagnostics(auto_fix=auto_fix))
loop.close()
# Format output
output = f"""
# Diagnostics Report
**Timestamp**: {report.timestamp}
**Duration**: {report.duration_ms:.2f}ms
## Summary
- **Total Issues**: {report.total_issues}
- **Critical**: {report.critical_issues}
- **Warnings**: {report.warnings}
- **Info**: {report.info_issues}
- **Fixed**: {len(report.fixed_issues)}
## Issues
"""
for issue in report.issues:
emoji = {"critical": "🔴", "warning": "🟡", "info": "🔵"}.get(issue.severity, "⚪")
fixed_mark = " ✅ FIXED" if issue.auto_fixed else ""
output += f"\n### {emoji} [{issue.category.upper()}] {issue.title}{fixed_mark}\n"
output += f"{issue.description}\n"
if issue.fixable and not issue.auto_fixed:
output += f"**Fix**: `{issue.fix_action}`\n"
return output
except Exception as e:
logger.error(f"Error running diagnostics: {e}")
return f"❌ Diagnostics failed: {str(e)}"
# ==================== TAB 2: PROVIDERS ====================
def get_providers_table(category_filter: str = "All") -> Any:
"""
Get providers from providers_config_extended.json with enhanced formatting
Returns: DataFrame or dict
"""
try:
providers_path = config.BASE_DIR / "providers_config_extended.json"
if not providers_path.exists():
if PANDAS_AVAILABLE:
return pd.DataFrame({"Error": ["providers_config_extended.json not found"]})
return {"error": "providers_config_extended.json not found"}
with open(providers_path, 'r') as f:
data = json.load(f)
providers = data.get('providers', {})
# Build table data with copy-friendly IDs
table_data = []
for provider_id, provider_info in providers.items():
if category_filter != "All":
if provider_info.get('category', '').lower() != category_filter.lower():
continue
# Format auth status with emoji
auth_status = "✅ Yes" if provider_info.get('requires_auth', False) else "❌ No"
validation = "✅ Valid" if provider_info.get('validated', False) else "⏳ Pending"
table_data.append({
"Provider ID": provider_id,
"Name": provider_info.get('name', provider_id),
"Category": provider_info.get('category', 'unknown'),
"Type": provider_info.get('type', 'http_json'),
"Base URL": provider_info.get('base_url', 'N/A'),
"Auth Required": auth_status,
"Priority": provider_info.get('priority', 'N/A'),
"Status": validation
})
if PANDAS_AVAILABLE:
return pd.DataFrame(table_data) if table_data else pd.DataFrame({"Message": ["No providers found"]})
else:
return {"providers": table_data} if table_data else {"error": "No providers found"}
except Exception as e:
logger.error(f"Error loading providers: {e}")
if PANDAS_AVAILABLE:
return pd.DataFrame({"Error": [str(e)]})
return {"error": str(e)}
def reload_providers_config() -> Tuple[Any, str]:
"""Reload providers config and return updated table + message with stats"""
try:
# Count providers
providers_path = config.BASE_DIR / "providers_config_extended.json"
with open(providers_path, 'r') as f:
data = json.load(f)
total_providers = len(data.get('providers', {}))
# Count by category
categories = {}
for provider_info in data.get('providers', {}).values():
cat = provider_info.get('category', 'unknown')
categories[cat] = categories.get(cat, 0) + 1
# Force reload by re-reading file
table = get_providers_table("All")
# Build detailed message
message = f"""✅ **Providers Reloaded Successfully!**
**Total Providers**: `{total_providers}`
**Reload Time**: `{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}`
**By Category**:
"""
for cat, count in sorted(categories.items(), key=lambda x: x[1], reverse=True)[:10]:
message += f"- {cat}: `{count}`\n"
return table, message
except Exception as e:
logger.error(f"Error reloading providers: {e}")
return get_providers_table("All"), f"❌ Reload failed: {str(e)}"
def get_provider_categories() -> List[str]:
"""Get unique provider categories"""
try:
providers_path = config.BASE_DIR / "providers_config_extended.json"
if not providers_path.exists():
return ["All"]
with open(providers_path, 'r') as f:
data = json.load(f)
categories = set()
for provider in data.get('providers', {}).values():
cat = provider.get('category', 'unknown')
categories.add(cat)
return ["All"] + sorted(list(categories))
except Exception as e:
logger.error(f"Error getting categories: {e}")
return ["All"]
# ==================== TAB 3: MARKET DATA ====================
def get_market_data_table(search_filter: str = "") -> Any:
"""Get latest market data from database with enhanced formatting"""
try:
prices = db.get_latest_prices(100)
if not prices:
if PANDAS_AVAILABLE:
return pd.DataFrame({"Message": ["No market data available. Click 'Refresh Prices' to collect data."]})
return {"error": "No data available"}
# Filter if search provided
filtered_prices = prices
if search_filter:
search_lower = search_filter.lower()
filtered_prices = [
p for p in prices
if search_lower in p.get('name', '').lower() or search_lower in p.get('symbol', '').lower()
]
table_data = []
for p in filtered_prices:
# Format change with emoji
change = p.get('percent_change_24h', 0)
change_emoji = "🟢" if change > 0 else ("🔴" if change < 0 else "⚪")
table_data.append({
"#": p.get('rank', 999),
"Symbol": p.get('symbol', 'N/A'),
"Name": p.get('name', 'Unknown'),
"Price": f"${p.get('price_usd', 0):,.2f}" if p.get('price_usd') else "N/A",
"24h Change": f"{change_emoji} {change:+.2f}%" if change is not None else "N/A",
"Volume 24h": f"${p.get('volume_24h', 0):,.0f}" if p.get('volume_24h') else "N/A",
"Market Cap": f"${p.get('market_cap', 0):,.0f}" if p.get('market_cap') else "N/A"
})
if PANDAS_AVAILABLE:
df = pd.DataFrame(table_data)
return df.sort_values('#') if not df.empty else pd.DataFrame({"Message": ["No matching data"]})
else:
return {"prices": table_data}
except Exception as e:
logger.error(f"Error getting market data: {e}")
if PANDAS_AVAILABLE:
return pd.DataFrame({"Error": [str(e)]})
return {"error": str(e)}
def refresh_market_data() -> Tuple[Any, str]:
"""Refresh market data by collecting from APIs with detailed stats"""
try:
logger.info("Refreshing market data...")
start_time = time.time()
success, count = collectors.collect_price_data()
duration = time.time() - start_time
# Get database stats
db_stats = db.get_database_stats()
if success:
message = f"""✅ **Market Data Refreshed Successfully!**
**Collection Stats**:
- New Records: `{count}`
- Duration: `{duration:.2f}s`
- Time: `{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}`
**Database Stats**:
- Total Price Records: `{db_stats.get('prices_count', 0):,}`
- Unique Symbols: `{db_stats.get('unique_symbols', 0)}`
- Last Update: `{db_stats.get('latest_price_update', 'N/A')}`
"""
else:
message = f"""⚠️ **Collection completed with issues**
- Records Collected: `{count}`
- Duration: `{duration:.2f}s`
- Check logs for details
"""
# Return updated table
table = get_market_data_table("")
return table, message
except Exception as e:
logger.error(f"Error refreshing market data: {e}")
return get_market_data_table(""), f"❌ Refresh failed: {str(e)}"
def plot_price_history(symbol: str, timeframe: str) -> Any:
"""Plot price history for a symbol"""
if not PLOTLY_AVAILABLE:
return None
try:
# Parse timeframe
hours_map = {"24h": 24, "7d": 168, "30d": 720, "90d": 2160}
hours = hours_map.get(timeframe, 168)
# Get history
history = db.get_price_history(symbol.upper(), hours)
if not history or len(history) < 2:
fig = go.Figure()
fig.add_annotation(
text=f"No historical data for {symbol}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
# Extract data
timestamps = [datetime.fromisoformat(h['timestamp'].replace('Z', '+00:00')) if isinstance(h['timestamp'], str) else datetime.now() for h in history]
prices = [h.get('price_usd', 0) for h in history]
# Create plot
fig = go.Figure()
fig.add_trace(go.Scatter(
x=timestamps,
y=prices,
mode='lines',
name='Price',
line=dict(color='#2962FF', width=2)
))
fig.update_layout(
title=f"{symbol} - {timeframe}",
xaxis_title="Time",
yaxis_title="Price (USD)",
hovermode='x unified',
height=400
)
return fig
except Exception as e:
logger.error(f"Error plotting price history: {e}")
fig = go.Figure()
fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
return fig
# ==================== TAB 4: APL SCANNER ====================
def run_apl_scan() -> str:
"""Run Auto Provider Loader scan"""
try:
logger.info("Running APL scan...")
# Import APL
import auto_provider_loader
# Run scan
apl = auto_provider_loader.AutoProviderLoader()
# Run async in sync context
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(apl.run())
loop.close()
# Build summary
stats = apl.stats
output = f"""
# APL Scan Complete
**Timestamp**: {stats.timestamp}
**Execution Time**: {stats.execution_time_sec:.2f}s
## HTTP Providers
- **Candidates**: {stats.total_http_candidates}
- **Valid**: {stats.http_valid}
- **Invalid**: {stats.http_invalid}
- **Conditional**: {stats.http_conditional} ⚠️
## HuggingFace Models
- **Candidates**: {stats.total_hf_candidates}
- **Valid**: {stats.hf_valid}
- **Invalid**: {stats.hf_invalid}
- **Conditional**: {stats.hf_conditional} ⚠️
## Total Active Providers
**{stats.total_active_providers}** providers are now active.
---
✅ All valid providers have been integrated into `providers_config_extended.json`.
See `PROVIDER_AUTO_DISCOVERY_REPORT.md` for full details.
"""
return output
except Exception as e:
logger.error(f"Error running APL: {e}\n{traceback.format_exc()}")
return f"❌ APL scan failed: {str(e)}\n\nCheck logs for details."
def get_apl_report() -> str:
"""Get last APL report"""
try:
report_path = config.BASE_DIR / "PROVIDER_AUTO_DISCOVERY_REPORT.md"
if report_path.exists():
with open(report_path, 'r') as f:
return f.read()
else:
return "No APL report found. Run a scan first."
except Exception as e:
logger.error(f"Error reading APL report: {e}")
return f"Error reading report: {str(e)}"
# ==================== TAB 5: HF MODELS ====================
def get_hf_models_status() -> Any:
"""Get HuggingFace models status with unified display"""
try:
import ai_models
model_info = ai_models.get_model_info()
# Build unified table - avoid duplicates
table_data = []
seen_models = set()
# First, add loaded models
if model_info.get('models_initialized'):
for model_name, loaded in model_info.get('loaded_models', {}).items():
if model_name not in seen_models:
status = "✅ Loaded" if loaded else "❌ Failed"
model_id = config.HUGGINGFACE_MODELS.get(model_name, 'N/A')
table_data.append({
"Model Type": model_name,
"Model ID": model_id,
"Status": status,
"Source": "config.py"
})
seen_models.add(model_name)
# Then add configured but not loaded models
for model_type, model_id in config.HUGGINGFACE_MODELS.items():
if model_type not in seen_models:
table_data.append({
"Model Type": model_type,
"Model ID": model_id,
"Status": "⏳ Not Loaded",
"Source": "config.py"
})
seen_models.add(model_type)
# Add models from providers_config if any
try:
providers_path = config.BASE_DIR / "providers_config_extended.json"
if providers_path.exists():
with open(providers_path, 'r') as f:
providers_data = json.load(f)
for provider_id, provider_info in providers_data.get('providers', {}).items():
if provider_info.get('category') == 'hf-model':
model_name = provider_info.get('name', provider_id)
if model_name not in seen_models:
table_data.append({
"Model Type": model_name,
"Model ID": provider_id,
"Status": "📚 Registry",
"Source": "providers_config"
})
seen_models.add(model_name)
except Exception as e:
logger.warning(f"Could not load models from providers_config: {e}")
if not table_data:
table_data.append({
"Model Type": "No models",
"Model ID": "N/A",
"Status": "⚠️ None configured",
"Source": "N/A"
})
if PANDAS_AVAILABLE:
return pd.DataFrame(table_data)
else:
return {"models": table_data}
except Exception as e:
logger.error(f"Error getting HF models status: {e}")
if PANDAS_AVAILABLE:
return pd.DataFrame({"Error": [str(e)]})
return {"error": str(e)}
def test_hf_model(model_name: str, test_text: str) -> str:
"""Test a HuggingFace model with text"""
try:
if not test_text or not test_text.strip():
return "⚠️ Please enter test text"
import ai_models
if model_name in ["sentiment_twitter", "sentiment_financial", "sentiment"]:
# Test sentiment analysis
result = ai_models.analyze_sentiment(test_text)
output = f"""
## Sentiment Analysis Result
**Input**: {test_text}
**Label**: {result.get('label', 'N/A')}
**Score**: {result.get('score', 0):.4f}
**Confidence**: {result.get('confidence', 0):.4f}
**Details**:
```json
{json.dumps(result.get('details', {}), indent=2)}
```
"""
return output
elif model_name == "summarization":
# Test summarization
summary = ai_models.summarize_text(test_text)
output = f"""
## Summarization Result
**Original** ({len(test_text)} chars):
{test_text}
**Summary** ({len(summary)} chars):
{summary}
"""
return output
else:
return f"⚠️ Model '{model_name}' not recognized or not testable"
except Exception as e:
logger.error(f"Error testing HF model: {e}")
return f"❌ Model test failed: {str(e)}"
def initialize_hf_models() -> Tuple[Any, str]:
"""Initialize HuggingFace models"""
try:
import ai_models
result = ai_models.initialize_models()
if result.get('success'):
message = f"✅ Models initialized successfully at {datetime.now().strftime('%H:%M:%S')}"
else:
message = f"⚠️ Model initialization completed with warnings: {result.get('status')}"
# Return updated table
table = get_hf_models_status()
return table, message
except Exception as e:
logger.error(f"Error initializing HF models: {e}")
return get_hf_models_status(), f"❌ Initialization failed: {str(e)}"
# ==================== TAB 6: DIAGNOSTICS ====================
def run_full_diagnostics(auto_fix: bool) -> str:
"""Run full system diagnostics"""
try:
from backend.services.diagnostics_service import DiagnosticsService
logger.info(f"Running diagnostics (auto_fix={auto_fix})...")
diagnostics = DiagnosticsService()
# Run async in sync context
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
report = loop.run_until_complete(diagnostics.run_full_diagnostics(auto_fix=auto_fix))
loop.close()
# Format detailed output
output = f"""
# 🔧 System Diagnostics Report
**Generated**: {report.timestamp}
**Duration**: {report.duration_ms:.2f}ms
---
## 📊 Summary
| Metric | Count |
|--------|-------|
| **Total Issues** | {report.total_issues} |
| **Critical** 🔴 | {report.critical_issues} |
| **Warnings** 🟡 | {report.warnings} |
| **Info** 🔵 | {report.info_issues} |
| **Auto-Fixed** ✅ | {len(report.fixed_issues)} |
---
## 🔍 Issues Detected
"""
if not report.issues:
output += "✅ **No issues detected!** System is healthy.\n"
else:
# Group by category
by_category = {}
for issue in report.issues:
cat = issue.category
if cat not in by_category:
by_category[cat] = []
by_category[cat].append(issue)
for category, issues in sorted(by_category.items()):
output += f"\n### {category.upper()}\n\n"
for issue in issues:
emoji = {"critical": "🔴", "warning": "🟡", "info": "🔵"}.get(issue.severity, "⚪")
fixed_mark = " ✅ **AUTO-FIXED**" if issue.auto_fixed else ""
output += f"**{emoji} {issue.title}**{fixed_mark}\n\n"
output += f"{issue.description}\n\n"
if issue.fixable and issue.fix_action and not issue.auto_fixed:
output += f"💡 **Fix**: `{issue.fix_action}`\n\n"
output += "---\n\n"
# System info
output += "\n## 💻 System Information\n\n"
output += "```json\n"
output += json.dumps(report.system_info, indent=2)
output += "\n```\n"
return output
except Exception as e:
logger.error(f"Error running diagnostics: {e}\n{traceback.format_exc()}")
return f"❌ Diagnostics failed: {str(e)}\n\nCheck logs for details."
# ==================== TAB 7: LOGS ====================
def get_logs(log_type: str = "recent", lines: int = 100) -> str:
"""Get system logs with copy-friendly format"""
try:
log_file = config.LOG_FILE
if not log_file.exists():
return "⚠️ Log file not found"
# Read log file
with open(log_file, 'r') as f:
all_lines = f.readlines()
# Filter based on log_type
if log_type == "errors":
filtered_lines = [line for line in all_lines if 'ERROR' in line or 'CRITICAL' in line]
elif log_type == "warnings":
filtered_lines = [line for line in all_lines if 'WARNING' in line]
else: # recent
filtered_lines = all_lines
# Get last N lines
recent_lines = filtered_lines[-lines:] if len(filtered_lines) > lines else filtered_lines
if not recent_lines:
return f"ℹ️ No {log_type} logs found"
# Format output with line numbers for easy reference
output = f"# 📋 {log_type.upper()} Logs (Last {len(recent_lines)} lines)\n\n"
output += "**Quick Stats:**\n"
output += f"- Total lines shown: `{len(recent_lines)}`\n"
output += f"- Log file: `{log_file}`\n"
output += f"- Type: `{log_type}`\n\n"
output += "---\n\n"
output += "```log\n"
for i, line in enumerate(recent_lines, 1):
output += f"{i:4d} | {line}"
output += "\n```\n"
output += "\n---\n"
output += "💡 **Tip**: You can now copy individual lines or the entire log block\n"
return output
except Exception as e:
logger.error(f"Error reading logs: {e}")
return f"❌ Error reading logs: {str(e)}"
def clear_logs() -> str:
"""Clear log file"""
try:
log_file = config.LOG_FILE
if log_file.exists():
# Backup first
backup_path = log_file.parent / f"{log_file.name}.backup.{int(datetime.now().timestamp())}"
import shutil
shutil.copy2(log_file, backup_path)
# Clear
with open(log_file, 'w') as f:
f.write("")
logger.info("Log file cleared")
return f"✅ Logs cleared (backup saved to {backup_path.name})"
else:
return "⚠️ No log file to clear"
except Exception as e:
logger.error(f"Error clearing logs: {e}")
return f"❌ Error clearing logs: {str(e)}"
# ==================== GRADIO INTERFACE ====================
def build_interface():
"""Build the complete Gradio Blocks interface"""
with gr.Blocks(title="Crypto Admin Dashboard", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🚀 Crypto Data Aggregator - Admin Dashboard
**Real-time cryptocurrency data aggregation and analysis platform**
Features: Provider Management | Market Data | Auto Provider Loader | HF Models | System Diagnostics
""")
with gr.Tabs():
# ==================== TAB 1: STATUS ====================
with gr.Tab("📊 Status"):
gr.Markdown("### System Status Overview")
with gr.Row():
status_refresh_btn = gr.Button("🔄 Refresh Status", variant="primary")
status_diag_btn = gr.Button("🔧 Run Quick Diagnostics")
status_summary = gr.Markdown()
with gr.Row():
with gr.Column():
gr.Markdown("#### Database Statistics")
db_stats_json = gr.JSON()
with gr.Column():
gr.Markdown("#### System Information")
system_info_json = gr.JSON()
diag_output = gr.Markdown()
# Load initial status
demo.load(
fn=get_status_tab,
outputs=[status_summary, db_stats_json, system_info_json]
)
# Refresh button
status_refresh_btn.click(
fn=get_status_tab,
outputs=[status_summary, db_stats_json, system_info_json]
)
# Quick diagnostics
status_diag_btn.click(
fn=lambda: run_diagnostics_from_status(False),
outputs=diag_output
)
# ==================== TAB 2: PROVIDERS ====================
with gr.Tab("🔌 Providers"):
gr.Markdown("### API Provider Management")
with gr.Row():
provider_category = gr.Dropdown(
label="Filter by Category",
choices=get_provider_categories(),
value="All"
)
provider_reload_btn = gr.Button("🔄 Reload Providers", variant="primary")
providers_table = gr.Dataframe(
label="Providers",
interactive=False,
wrap=True
) if PANDAS_AVAILABLE else gr.JSON(label="Providers")
provider_status = gr.Textbox(label="Status", interactive=False)
# Load initial providers
demo.load(
fn=lambda: get_providers_table("All"),
outputs=providers_table
)
# Category filter
provider_category.change(
fn=get_providers_table,
inputs=provider_category,
outputs=providers_table
)
# Reload button
provider_reload_btn.click(
fn=reload_providers_config,
outputs=[providers_table, provider_status]
)
# ==================== TAB 3: MARKET DATA ====================
with gr.Tab("📈 Market Data"):
gr.Markdown("### Live Cryptocurrency Market Data")
with gr.Row():
market_search = gr.Textbox(
label="Search",
placeholder="Search by name or symbol..."
)
market_refresh_btn = gr.Button("🔄 Refresh Prices", variant="primary")
market_table = gr.Dataframe(
label="Market Data",
interactive=False,
wrap=True,
height=400
) if PANDAS_AVAILABLE else gr.JSON(label="Market Data")
market_status = gr.Textbox(label="Status", interactive=False)
# Price chart section
if PLOTLY_AVAILABLE:
gr.Markdown("#### Price History Chart")
with gr.Row():
chart_symbol = gr.Textbox(
label="Symbol",
placeholder="BTC",
value="BTC"
)
chart_timeframe = gr.Dropdown(
label="Timeframe",
choices=["24h", "7d", "30d", "90d"],
value="7d"
)
chart_plot_btn = gr.Button("📊 Plot")
price_chart = gr.Plot(label="Price History")
chart_plot_btn.click(
fn=plot_price_history,
inputs=[chart_symbol, chart_timeframe],
outputs=price_chart
)
# Load initial data
demo.load(
fn=lambda: get_market_data_table(""),
outputs=market_table
)
# Search
market_search.change(
fn=get_market_data_table,
inputs=market_search,
outputs=market_table
)
# Refresh
market_refresh_btn.click(
fn=refresh_market_data,
outputs=[market_table, market_status]
)
# ==================== TAB 4: APL SCANNER ====================
with gr.Tab("🔍 APL Scanner"):
gr.Markdown("### Auto Provider Loader")
gr.Markdown("Automatically discover, validate, and integrate API providers and HuggingFace models.")
with gr.Row():
apl_scan_btn = gr.Button("▶️ Run APL Scan", variant="primary", size="lg")
apl_report_btn = gr.Button("📄 View Last Report")
apl_output = gr.Markdown()
apl_scan_btn.click(
fn=run_apl_scan,
outputs=apl_output
)
apl_report_btn.click(
fn=get_apl_report,
outputs=apl_output
)
# Load last report on startup
demo.load(
fn=get_apl_report,
outputs=apl_output
)
# ==================== TAB 5: HF MODELS ====================
with gr.Tab("🤖 HF Models"):
gr.Markdown("### HuggingFace Models Status & Testing")
with gr.Row():
hf_init_btn = gr.Button("🔄 Initialize Models", variant="primary")
hf_refresh_btn = gr.Button("🔄 Refresh Status")
hf_models_table = gr.Dataframe(
label="Models",
interactive=False
) if PANDAS_AVAILABLE else gr.JSON(label="Models")
hf_status = gr.Textbox(label="Status", interactive=False)
gr.Markdown("#### Test Model")
with gr.Row():
test_model_dropdown = gr.Dropdown(
label="Model",
choices=["sentiment", "sentiment_twitter", "sentiment_financial", "summarization"],
value="sentiment"
)
test_input = gr.Textbox(
label="Test Input",
placeholder="Enter text to test the model...",
lines=3
)
test_btn = gr.Button("▶️ Run Test", variant="secondary")
test_output = gr.Markdown(label="Test Output")
# Load initial status
demo.load(
fn=get_hf_models_status,
outputs=hf_models_table
)
# Initialize models
hf_init_btn.click(
fn=initialize_hf_models,
outputs=[hf_models_table, hf_status]
)
# Refresh status
hf_refresh_btn.click(
fn=get_hf_models_status,
outputs=hf_models_table
)
# Test model
test_btn.click(
fn=test_hf_model,
inputs=[test_model_dropdown, test_input],
outputs=test_output
)
# ==================== TAB 6: DIAGNOSTICS ====================
with gr.Tab("🔧 Diagnostics"):
gr.Markdown("### System Diagnostics & Auto-Repair")
with gr.Row():
diag_run_btn = gr.Button("▶️ Run Diagnostics", variant="primary")
diag_autofix_btn = gr.Button("🔧 Run with Auto-Fix", variant="secondary")
diagnostics_output = gr.Markdown()
diag_run_btn.click(
fn=lambda: run_full_diagnostics(False),
outputs=diagnostics_output
)
diag_autofix_btn.click(
fn=lambda: run_full_diagnostics(True),
outputs=diagnostics_output
)
# ==================== TAB 7: LOGS ====================
with gr.Tab("📋 Logs"):
gr.Markdown("### System Logs Viewer")
with gr.Row():
log_type = gr.Dropdown(
label="Log Type",
choices=["recent", "errors", "warnings"],
value="recent"
)
log_lines = gr.Slider(
label="Lines to Show",
minimum=10,
maximum=500,
value=100,
step=10
)
with gr.Row():
log_refresh_btn = gr.Button("🔄 Refresh Logs", variant="primary")
log_clear_btn = gr.Button("🗑️ Clear Logs", variant="secondary")
logs_output = gr.Markdown()
log_clear_status = gr.Textbox(label="Status", interactive=False, visible=False)
# Load initial logs
demo.load(
fn=lambda: get_logs("recent", 100),
outputs=logs_output
)
# Refresh logs
log_refresh_btn.click(
fn=get_logs,
inputs=[log_type, log_lines],
outputs=logs_output
)
# Update when dropdown changes
log_type.change(
fn=get_logs,
inputs=[log_type, log_lines],
outputs=logs_output
)
# Clear logs
log_clear_btn.click(
fn=clear_logs,
outputs=log_clear_status
).then(
fn=lambda: get_logs("recent", 100),
outputs=logs_output
)
# Footer
gr.Markdown("""
---
**Crypto Data Aggregator Admin Dashboard** | Real Data Only | No Mock/Fake Data
""")
return demo
# ==================== MAIN ENTRY POINT ====================
demo = build_interface()
if __name__ == "__main__":
logger.info("Launching Gradio dashboard...")
# Try to mount FastAPI app for API endpoints
try:
from fastapi import FastAPI as FastAPIApp
from fastapi.middleware.wsgi import WSGIMiddleware
import uvicorn
from threading import Thread
import time
# Import the FastAPI app from hf_unified_server
try:
from hf_unified_server import app as fastapi_app
logger.info("✅ FastAPI app imported successfully")
# Start FastAPI server in a separate thread on port 7861
def run_fastapi():
uvicorn.run(
fastapi_app,
host="0.0.0.0",
port=7861,
log_level="info"
)
fastapi_thread = Thread(target=run_fastapi, daemon=True)
fastapi_thread.start()
time.sleep(2) # Give FastAPI time to start
logger.info("✅ FastAPI server started on port 7861")
except ImportError as e:
logger.warning(f"⚠️ Could not import FastAPI app: {e}")
except Exception as e:
logger.warning(f"⚠️ Could not start FastAPI server: {e}")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)