Spaces:
Runtime error
Runtime error
File size: 20,755 Bytes
33c91ac fc49172 eed0bd6 0c884c8 7fb063f f92b956 0c884c8 f92b956 0c884c8 f92b956 3e987df f92b956 0c884c8 7fb063f eed0bd6 7fb063f f92b956 0c884c8 f92b956 7fb063f 0c884c8 f92b956 7fb063f f92b956 7fb063f f92b956 0c884c8 eed0bd6 8025205 eed0bd6 f92b956 e5b20d0 f92b956 0c884c8 419975f 929a40f 419975f 7fb063f eed0bd6 7fb063f 419975f 929a40f 419975f 7fb063f 419975f 7fb063f f92b956 0c884c8 f92b956 0c884c8 f92b956 419975f f92b956 929a40f 419975f f92b956 929a40f f92b956 eed0bd6 f92b956 419975f f92b956 419975f f92b956 0c884c8 f92b956 419975f f92b956 7fb063f 0c884c8 d7d90e6 7fb063f f92b956 7fb063f f92b956 eed0bd6 7fb063f f92b956 7fb063f f92b956 7fb063f f92b956 7fb063f f92b956 7fb063f 0c884c8 f92b956 0c884c8 7fb063f f92b956 0c884c8 7fb063f 0c884c8 f92b956 0c884c8 7fb063f f92b956 0c884c8 7fb063f f92b956 7fb063f f92b956 7fb063f f92b956 7fb063f f92b956 7fb063f eed0bd6 f92b956 7fb063f eed0bd6 7fb063f f92b956 0c884c8 f92b956 0c884c8 f92b956 d7d90e6 eed0bd6 7fb063f f92b956 eed0bd6 f92b956 eed0bd6 f92b956 eed0bd6 f92b956 7fb063f 0c884c8 f92b956 eed0bd6 f92b956 7fb063f eed0bd6 f92b956 7fb063f f92b956 eed0bd6 f92b956 0c884c8 438aec8 0c884c8 7fb063f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
import spaces
import os
import json
from openai import OpenAI
import random
import re
import time
import torch
import gradio as gr
from ProT2I.prot2i_pipeline_sdxl import ProT2IPipeline
from ProT2I.processors import create_controller
from PIL import Image
import numpy as np
import difflib
_HEADER_ = '''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Detail++ for SDXL</h1>
</div>
⭐⭐⭐**Tips:**
- ⭐We provide a version of llm automatically decomposing the prompt, and you just need to input the complex prompts with various attributes like color, style etc. in the `Prompt` textbox.
- ⭐For attributes overflow, you can adaptively increase the `Threshold Value` for mask extraction.
- ⭐Also you can adjust the sub-prompts mannually in `Decomposed sub-prompts`. When entering this, please use the fixed format as followed:
- The first line must start with <strong>[original]</strong>.
- Subsequent lines must start with <strong>[sub-index][subject words]</strong>, where <em>subject words</em> indicates the corresponding subject of currently adding attributes.
- Add one branch <strong>[sub-0][None]</strong>, if you want to remove all confusing attributes firstly.
'''
def create_placeholder_image():
return Image.fromarray(np.ones((1024, 1024, 3), dtype=np.uint8) * 255)
def get_diff_string(str1, str2):
"""
str1 and str2 are two strings.
This function returns the difference between the two strings as a string.
"""
diff = difflib.ndiff(str1.split(), str2.split())
added_parts = [word[2:] for word in diff if word.startswith('+ ')] # get added parts
return ' '.join(added_parts)
def process_text(prompt):
client = OpenAI(
base_url="https://a1.aizex.me/v1",
api_key = os.getenv('api_key'),
)
system_prompt = """**Detailed Instruction Prompt for Decomposing Image Descriptions**
You are provided with an original prompt that describes an image containing one or more subjects with detailed attributes (such as colors, clothing, objects, etc.). Your task is to generate a series of sub-prompts that decompose the original prompt into simpler, attribute-focused branches. Follow the steps and rules below exactly:
1. **Output Format Requirements:**
- **First Line:**
- Begin with `[original]` followed by a space and then the complete original prompt exactly as provided.
- **Subsequent Lines:**
- Each additional line must start with `[sub-index][subject]` where:
- `sub-index` is a sequential number starting from 0.
- `subject` is a keyword that indicates which subject's detailed attribute is being highlighted. If the attribute added is global, like background, use `None`. For the first branch, use `None` as the subject keyword.
- **Line Separation:**
- Each sub-prompt must appear on its own line.
2. **Decomposition Rules:**
- **Generic Version ([sub-0][None]):**
- Create a version of the prompt that has all specific detailed attributes (e.g., color adjectives, style adjectives) removed. This produces a simplified, generic description of the scene.
- **Attribute-Specific Branches:**
- For every distinct subject in the original prompt that has a specific attribute, generate a branch that reintroduces that particular attribute while keeping all other subjects in their generic state.
- Each branch must re-add the attribute detail for only one subject. For example, if the original prompt mentions a “red hat” on one subject and a “blue tracksuit” on another, then:
- One branch should reintroduce “red” for the hat.
- Another branch should reintroduce “blue” for the tracksuit.
- The keyword inside the brackets (after the sub-index) should indicate the subject whose attribute is restored (e.g., `hat`, `tracksuit`, `car`, etc.).
3. **General Guidelines:**
- **Consistency:**
- Ensure that the modified sub-prompts are logically consistent with the original description. Only one attribute should be reintroduced per branch, while all other attribute details remain generic.
- **Precision:**
- Follow the exact fixed format with square brackets and no extra characters or commentary.
- **No Extra Text:**
- Do not include any explanations, notes, or additional commentary in the output. The final output should only contain the sub-prompts as specified.
- **Output format:**
- The output should be a JSON object with a single key `variants` that contains a list of sub-prompts.
4. **Example to Follow:**
Given the original prompt:
```
a man wearing a red hat and blue tracksuit is standing in front of a green sports car
```
The output should be:
```
{"variants":
[
[original] a man wearing a red hat and blue tracksuit is standing in front of a green sports car
[sub-0][None] a man wearing a hat and tracksuit is standing in front of a sports car
[sub-1][hat] a man wearing a red hat and tracksuit is standing in front of a sports car
[sub-2][tracksuit] a man wearing a hat and blue tracksuit is standing in front of a sports car
[sub-3][car] a man wearing a hat and tracksuit is standing in front of a green sports car
]
}
```
5. **Another Example to Follow:**
Given the original prompt:
```
In a cyberpunk style city night, a VanGogh-style hound dog is standing in front of a lego-style sports car
```
The output should be:
```
{"variants":
[
[original] In a cyberpunk style city night, a VanGogh-style hound dog is standing in front of a Lego-style sports car
[sub-0][None] In a city night, a hound dog is standing in front of a sports car
[sub-1][None] In a cyberpunk style city night, a hound dog is standing in front of a sports car
[sub-2][hound dog] In a city night, a VanGogh-style hound dog is standing in front of a sports car
[sub-3][car] In a city night, a hound dog is standing in front of a Lego-style sports car
]
}
```
6. **Task Summary:**
- Your task is to read the given original prompt and output a set of sub-prompts using the format above.
- The first sub-prompt ([sub-0][None]) should be the fully generic version.
- Each subsequent sub-prompt should selectively reintroduce one detailed attribute corresponding to a subject from the original prompt.
Now, use this detailed instruction prompt to generate the decomposed sub-prompts for any provided original image description.
---
"""
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
temperature=0.7,
)
return response.choices[0].message.content
def init_pipeline():
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
pipe = ProT2IPipeline.from_pretrained("SG161222/RealVisXL_V4.0", use_safetensors=True, variant='fp16').to(torch.float16).to(device)
return pipe, device
def parse_sub_prompts(text):
lines = [line.strip() for line in text.split('\n') if line.strip()]
if not lines:
raise ValueError("Please enter at least one line.")
sps = []
nps = []
if not lines[0].lower().startswith("[original]"):
raise ValueError("The first line must start with indicating the original description.")
sps.append(lines[0][len("[original]"):].strip())
for line in lines[1:]:
m = re.match(r"^\[sub-\d+\]\[([^\]]+)\]\s*(.*)$", line)
if not m:
raise ValueError(f"Sub-prompt format error: {line}\nFormat should be: [sub-index][mask] prompt")
mask = m.group(1).strip()
prompt = m.group(2).strip()
sps.append(prompt)
nps.append(mask if mask.lower() != "none" else None)
# print(sps)
# print(nps)
return sps, nps
def process_image(
sub_prompts,
n_self_replace,
lb_threshold,
attention_res,
use_nurse,
centroid_alignment,
width,
height,
inference_steps,
seed
):
try:
sps, nps = parse_sub_prompts(sub_prompts)
if len(sps) != len(nps) + 1:
placeholder_image = create_placeholder_image()
err = f"Error: Number of sub-prompts ({len(sps)}) should be equal to number of masking words + 1 ({len(nps)}+1)"
return placeholder_image, [placeholder_image] * 3, err
pipe, device = init_pipeline()
guidance_scale = 7.5
n_cross = 0.0
scale_factor = 1750
scale_range = (1.0, 0.0)
angle_loss_weight = 0.0
max_refinement_steps = [6, 3]
nursing_thresholds = {0: 26, 1: 25, 2: 24, 3: 23, 4: 22.5, 5: 22}
save_cross_attention_maps = False
if seed == -1:
seed = random.randint(0, 1000000)
g_cpu = torch.Generator().manual_seed(seed)
controller_list = []
run_name = f'runs-SDXL/{time.strftime("%Y%m%d-%H%M%S")}-{seed}'
controller_np = [[sps[i-1], sps[i]] for i in range(1, len(sps))]
status_messages = [f"seed: {seed}"]
for i in range(len(controller_np)):
controller_kwargs = {
"edit_type": "refine",
"local_blend_words": nps[i],
"n_cross_replace": {"default_": n_cross},
"n_self_replace": float(n_self_replace),
"lb_threshold": float(lb_threshold),
"lb_prompt": [sps[0]]*2,
"is_nursing": use_nurse,
"lb_res": (int(attention_res), int(attention_res)),
"run_name": run_name,
"save_map": save_cross_attention_maps,
}
if nps[i] is None:
subject_str = ",".join([str(x) for x in nps if x is not None])
status_messages.append(f"Remove attributes from {subject_str}")
else:
diff_str = get_diff_string(sps[i], sps[i+1]) if i+1 < len(sps) else ""
if diff_str:
status_messages.append(f"Add {diff_str} to {nps[i]}")
controller = create_controller(
prompts=controller_np[i],
cross_attention_kwargs=controller_kwargs,
num_inference_steps=inference_steps,
tokenizer=pipe.tokenizer,
device=device,
attn_res=(int(attention_res), int(attention_res))
)
controller_list.append(controller)
cross_attention_kwargs = {
"subprompts": sps,
"set_controller": controller_list,
"subject_words": nps if use_nurse else None,
"nursing_threshold": nursing_thresholds,
"max_refinement_steps": max_refinement_steps,
"scale_factor": scale_factor,
"scale_range": scale_range,
"centroid_alignment": centroid_alignment,
"angle_loss_weight": angle_loss_weight,
}
output = pipe(
prompt=sps[-1],
width=width,
height=height,
cross_attention_kwargs=cross_attention_kwargs,
num_inference_steps=inference_steps,
num_images_per_prompt=1,
generator=g_cpu,
attn_res=(int(attention_res), int(attention_res)),
)[0]
return output["images"][-1], output["images"], "\n".join(status_messages)
except Exception as e:
placeholder_image = create_placeholder_image()
return placeholder_image, [placeholder_image] * len(sub_prompts), f"Error: {str(e)}"
article = r"""
---
📝 **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@misc{chen2025detailtrainingfreeenhancertexttoimage,
title={Detail++: Training-Free Detail Enhancer for Text-to-Image Diffusion Models},
author={Lifeng Chen and Jiner Wang and Zihao Pan and Beier Zhu and Xiaofeng Yang and Chi Zhang},
year={2025},
eprint={2507.17853},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2507.17853},
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>1633724411c@gmail.com</b>.
"""
# Create Gradio interface
with gr.Blocks() as iface:
gr.Markdown(_HEADER_)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt")
with gr.Accordion("Decomposed sub-prompts", open=False):
sub_prompts = gr.Textbox(
lines=7,
label="Sub-prompts",
placeholder="You can enter sub-prompts manually, one per line, e.g.\n"
"[original]...\n"
"[sub-0][None]...\n"
"[sub-1][hat]...\n"
"..."
)
n_self_replace = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.1,
label="Percetange of self-attention map substitution steps"
)
lb_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.25,
step=0.05,
label="Threshold for latent mask extraction of subject words"
)
attention_res = gr.Number(
label="Attention map resolution",
value=32
)
with gr.Row():
use_nurse = gr.Checkbox(
label="Use attention nursing",
value=True
)
centroid_alignment = gr.Checkbox(
label="Use centroid alignment",
value=False
)
with gr.Row():
width = gr.Number(
label="Width",
value=1024
)
height = gr.Number(
label="Height",
value=1024
)
inference_steps = gr.Number(
label="Inference steps",
value=20
)
seed = gr.Number(
label="Seed (-1 for random)",
value=-1
)
generate_btn = gr.Button("Generate Image")
with gr.Column(scale=1):
output_image = gr.Image(label="Generated Image")
with gr.Accordion("Progressive Generating Process", open=False):
gallery = gr.Gallery(
label="Generation Steps",
show_label=True,
elem_id="gallery",
columns=2,
rows=3,
height="auto"
)
output_status = gr.Textbox(label="Status", lines=7)
# Connect the generate button to the process_image function
generate_btn.click(
fn=process_image,
inputs=[
sub_prompts,
n_self_replace,
lb_threshold,
attention_res,
use_nurse,
centroid_alignment,
width,
height,
inference_steps,
seed
],
outputs=[output_image, gallery, output_status]
)
@spaces.GPU
def generate_image(
prompt,
sub_prompts,
n_self_replace,
lb_threshold,
attention_res,
use_nurse,
centroid_alignment,
width,
height,
inference_steps,
seed
):
try:
if not sub_prompts or sub_prompts.strip() == "":
gpt_output = process_text(prompt)
new_sub_prompts = "\n".join(json.loads(gpt_output)["variants"])
else:
new_sub_prompts = sub_prompts
image, gallery_list, status = process_image(
new_sub_prompts,
n_self_replace,
lb_threshold,
attention_res,
use_nurse,
centroid_alignment,
width,
height,
inference_steps,
seed
)
return image, gallery_list, status, new_sub_prompts
except Exception as e:
error_message = f"Error: {str(e)}"
print(error_message)
return None, [None] * 3, error_message, sub_prompts
# Create Gradio interface
with gr.Blocks() as iface:
gr.Markdown(_HEADER_)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt")
with gr.Accordion("Decomposed sub-prompts", open=False):
sub_prompts = gr.Textbox(
lines=7,
label="Sub-prompts",
placeholder="Enter sub-prompts, one per line, e.g.\n"
"[original]...\n"
"[sub-0][None]...\n"
"[sub-1][hat]...\n"
"..."
)
n_self_replace = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.1,
label="Percetange of self-attention map substitution steps"
)
lb_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.25,
step=0.05,
label="Threshold for latent mask extraction of subject words"
)
attention_res = gr.Number(
label="Attention map resolution",
value=32
)
with gr.Row():
use_nurse = gr.Checkbox(
label="Use attention nursing",
value=True
)
centroid_alignment = gr.Checkbox(
label="Use centroid alignment",
value=False
)
with gr.Row():
width = gr.Number(
label="Width",
value=1024
)
height = gr.Number(
label="Height",
value=1024
)
inference_steps = gr.Number(
label="Inference steps",
value=20
)
seed = gr.Number(
label="Seed (-1 for random)",
value=-1
)
generate_btn = gr.Button("Generate Image")
with gr.Column(scale=1):
output_image = gr.Image(label="Generated Image")
with gr.Accordion("Progressive Generating Process", open=False):
gallery = gr.Gallery(
label="Generation Steps",
show_label=True,
elem_id="gallery",
columns=2,
rows=3,
height="auto"
)
output_status = gr.Textbox(label="Status", lines=7)
# 修改回调:调用 generate_image 函数,同时更新 sub_prompts 文本框
generate_btn.click(
fn=generate_image,
inputs=[
prompt,
sub_prompts,
n_self_replace,
lb_threshold,
attention_res,
use_nurse,
centroid_alignment,
width,
height,
inference_steps,
seed
],
outputs=[output_image, gallery, output_status, sub_prompts]
)
# Examples
example_data = [
[
"In a cyberpunk style city night, a cartoon style hound dog is standing in front of a lego style sports car",
"",
0.5,
20,
5
],
[
"A sketch-style robot is leaning against an oil-painting style tree",
"",
0.5,
20,
2
],
[
"a man wearing a red hat and blue tracksuit is standing in front of a green sports car",
"",
0.5,
20,
6
]
]
gr.Examples(
examples=example_data,
inputs=[
prompt,
sub_prompts,
lb_threshold,
inference_steps,
seed
]
)
gr.Markdown(article)
if __name__ == "__main__":
iface.launch() |