| # Inference Servers | |
| One can connect to Hugging Face text generation inference server, gradio servers running h2oGPT, or OpenAI servers. | |
| ## Hugging Face Text Generation Inference Server-Client | |
| ### Local Install | |
| #### **Not Recommended** | |
| This is just following the same [local-install](https://github.com/huggingface/text-generation-inference). | |
| ```bash | |
| curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh | |
| source "$HOME/.cargo/env" | |
| ``` | |
| ```bash | |
| PROTOC_ZIP=protoc-21.12-linux-x86_64.zip | |
| curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP | |
| sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc | |
| sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*' | |
| rm -f $PROTOC_ZIP | |
| ``` | |
| ```bash | |
| git clone https://github.com/huggingface/text-generation-inference.git | |
| cd text-generation-inference | |
| ``` | |
| Needed to compile on Ubuntu: | |
| ```bash | |
| sudo apt-get install libssl-dev gcc -y | |
| ``` | |
| Use `BUILD_EXTENSIONS=False` instead of have GPUs below A100. | |
| ```bash | |
| conda create -n textgen -y | |
| conda activate textgen | |
| conda install python=3.10 -y | |
| export CUDA_HOME=/usr/local/cuda-11.8 | |
| BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels | |
| cd server && make install install-flash-attention | |
| ``` | |
| ```bash | |
| NCCL_SHM_DISABLE=1 CUDA_VISIBLE_DEVICES=0 text-generation-launcher --model-id h2oai/h2ogpt-oig-oasst1-512-6_9b --port 8080 --sharded false --trust-remote-code --max-stop-sequences=6 | |
| ``` | |
| ### Docker Install | |
| #### **Recommended** | |
| ```bash | |
| # https://docs.docker.com/engine/install/ubuntu/ | |
| sudo snap remove --purge docker | |
| sudo apt-get update | |
| sudo apt-get install ca-certificates curl gnupg | |
| sudo install -m 0755 -d /etc/apt/keyrings | |
| curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg | |
| sudo chmod a+r /etc/apt/keyrings/docker.gpg | |
| echo "deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \ | |
| "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null | |
| sudo apt-get update | |
| sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin | |
| sudo apt-get install -y nvidia-container-toolkit | |
| sudo docker run hello-world | |
| # https://docs.docker.com/engine/install/linux-postinstall/ | |
| sudo groupadd docker | |
| sudo usermod -aG docker $USER | |
| newgrp docker | |
| docker run hello-world | |
| sudo nvidia-ctk runtime configure | |
| sudo systemctl stop docker | |
| sudo systemctl start docker | |
| ``` | |
| Reboot or run: | |
| ```bash | |
| newgrp docker | |
| ``` | |
| in order to log in to this user. | |
| Then for falcon 7b run: | |
| ```bash | |
| export CUDA_VISIBLE_DEVICES=0 | |
| docker run --gpus device=0 --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2 --max-input-length 2048 --max-total-tokens 4096 --sharded=false --disable-custom-kernels --trust-remote-code --max-stop-sequences=6 | |
| ``` | |
| or Pythia 12b: | |
| ```bash | |
| export CUDA_VISIBLE_DEVICES=0,1,2,3 | |
| docker run --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-oasst1-512-12b --max-input-length 2048 --max-total-tokens 4096 --sharded=true --num-shard=4 --disable-custom-kernels --trust-remote-code --max-stop-sequences=6 | |
| ``` | |
| or for 20B NeoX on 4 GPUs: | |
| ```bash | |
| export CUDA_VISIBLE_DEVICES=0,1,2,3 | |
| docker run --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-oasst1-512-20b --max-input-length 2048 --max-total-tokens 4096 --sharded=true --num-shard=4 --disable-custom-kernels --trust-remote-code --max-stop-sequences=6 | |
| ``` | |
| or for Falcon 40B on 2 GPUs and some HF token `$HUGGING_FACE_HUB_TOKEN`: | |
| ```bash | |
| export CUDA_VISIBLE_DEVICES=1,2 | |
| sudo docker run --gpus all --shm-size 1g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e HUGGING_FACE_HUB_TOKEN=$HUGGING_FACE_HUB_TOKEN -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2 --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --sharded true --num-shard 2 | |
| ``` | |
| Or for MosaicML Chat 30b (careful with docker GPU and TGI version, and one can increase the token counts since has 8k input context): | |
| ```bash | |
| docker run -d --gpus '"device=0,3"' --shm-size 2g -e HUGGING_FACE_HUB_TOKEN=$HUGGING_FACE_HUB_TOKEN -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.9.1 --model-id mosaicml/mpt-30b-chat --max-batch-prefill-tokens=2048 --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --trust-remote-code | |
| ``` | |
| or for Falcon 40B instruct: | |
| ```bash | |
| export CUDA_VISIBLE_DEVICES=6,7 | |
| docker run -d --gpus all --shm-size 1g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e HUGGING_FACE_HUB_TOKEN=$HUGGING_FACE_HUB_TOKEN -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id tiiuae/falcon-40b-instruct --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --sharded true --num-shard 2 | |
| ``` | |
| or for Vicuna33b: | |
| ```bash | |
| export CUDA_VISIBLE_DEVICES=4,5 | |
| docker run -d --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id lmsys/vicuna-33b-v1.3 --max-input-length 2048 --max-total-tokens 4096 --sharded true --num-shard 2 | |
| ``` | |
| If one changes the port `6112` for each docker run command, any number of inference servers with any models can be added. | |
| On isolated system, one might want to script start-up, and start with a kill sequence like this if one is using ngrok to map a local system to some domain name: | |
| ```bash | |
| pkill -f generate --signal 9 | |
| pkill -f gradio --signal 9 | |
| pkill -f ngrok --signal 9 | |
| pkill -f text-generation-server --signal 9 | |
| sudo killall -9 generate | |
| sudo killall -9 ngrok | |
| sudo killall -9 text-generation-server | |
| docker kill $(docker ps -q) | |
| ``` | |
| then create a run script to launch all dockers or other gradio servers, sleep a bit, and then launch all generates to connect to any TGI or other servers. | |
| ### Testing | |
| Python test: | |
| ```python | |
| from text_generation import Client | |
| client = Client("http://127.0.0.1:6112") | |
| print(client.generate("What is Deep Learning?", max_new_tokens=17).generated_text) | |
| text = "" | |
| for response in client.generate_stream("What is Deep Learning?", max_new_tokens=17): | |
| if not response.token.special: | |
| text += response.token.text | |
| print(text) | |
| ``` | |
| Curl Test: | |
| ```bash | |
| curl 127.0.0.1:6112/generate -X POST -d '{"inputs":"<|prompt|>What is Deep Learning?<|endoftext|><|answer|>","parameters":{"max_new_tokens": 512, "truncate": 1024, "do_sample": true, "temperature": 0.1, "repetition_penalty": 1.2}}' -H 'Content-Type: application/json' --user "user:bhx5xmu6UVX4" | |
| ``` | |
| ### Integration with h2oGPT | |
| For example, server at IP `192.168.1.46` on docker for 4 GPU system running 12B model sharded across all 4 GPUs: | |
| ```bash | |
| export CUDA_VISIBLE_DEVICES=0,1,2,3 | |
| docker run --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-oasst1-512-12b --max-input-length 2048 --max-total-tokens 4096 --sharded=true --num-shard=4 --disable-custom-kernels --trust-remote-code --max-stop-sequences=6 | |
| ``` | |
| then generate in h2oGPT environment: | |
| ```bash | |
| SAVE_DIR=./save/ python generate.py --inference_server="http://192.168.1.46:6112" --base_model=h2oai/h2ogpt-oasst1-512-12b | |
| ``` | |
| One can pass, e.g., `--max_max_new_tokens=2048 --max_new_tokens=512` to generate.py to control tokens, along with `--max-batch-prefill-tokens=2048 --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --trust-remote-code` for TGI server to match. | |
| ## Gradio Inference Server-Client | |
| You can use your own server for some model supported by the server's system specs, e.g.: | |
| ```bash | |
| SAVE_DIR=./save/ python generate.py --base_model=h2oai/h2ogpt-oasst1-512-12b | |
| ``` | |
| In any case, for your own server or some other server using h2oGPT gradio server, the client should specify the gradio endpoint as inference server. E.g. if server is at `http://192.168.0.10:7680`, then | |
| ```bash | |
| python generate.py --inference_server="http://192.168.0.10:7680" --base_model=h2oai/h2ogpt-oasst1-falcon-40b | |
| ``` | |
| One can also use gradio live link like `https://6a8d4035f1c8858731.gradio.live` or some ngrok or other mapping/redirect to `https://` address. | |
| One must specify the model used at the endpoint so the prompt type is handled. This assumes that base model is specified in `prompter.py::prompt_type_to_model_name`. Otherwise, one should pass `--prompt_type` as well, like: | |
| ```bash | |
| python generate.py --inference_server="http://192.168.0.10:7680" --base_model=foo_model --prompt_type=wizard2 | |
| ``` | |
| If even `prompt_type` is not listed in `enums.py::PromptType` then one can pass `--prompt_dict` like: | |
| ```bash | |
| python generate.py --inference_server="http://192.168.0.10:7680" --base_model=foo_model --prompt_type=custom --prompt_dict="{'PreInput': None,'PreInstruct': '', 'PreResponse': '<bot>:', 'botstr': '<bot>:', 'chat_sep': '\n', 'humanstr': '<human>:', 'promptA': '<human>: ', 'promptB': '<human>: ', 'terminate_response': ['<human>:', '<bot>:']}" | |
| ``` | |
| which is just an example for the `human_bot` prompt type. | |
| ## OpenAI Inference Server-Client | |
| If you have an OpenAI key and set an ENV `OPENAI_API_KEY`, then you can access OpenAI models via gradio by running: | |
| ```bash | |
| OPENAI_API_KEY=<key> python generate.py --inference_server="openai_chat" --base_model=gpt-3.5-turbo --h2ocolors=False --langchain_mode=MyData | |
| ``` | |
| where `<key>` should be replaced by your OpenAI key that probably starts with `sk-`. OpenAI is **not** recommended for private document question-answer, but it can be a good reference for testing purposes or when privacy is not required. | |
| ## vLLM Inference Server-Client | |
| Create separate environment | |
| ```bash | |
| conda create -n vllm -y | |
| conda activate vllm | |
| conda install python=3.10 -y | |
| ``` | |
| then ensure openai global key/base are not changed in race if used together: | |
| ```bash | |
| cd $HOME/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/ | |
| rm -rf openai_vllm* | |
| cp -a openai openai_vllm | |
| cp -a openai-0.27.8.dist-info openai_vllm-0.27.8.dist-info | |
| find openai_vllm -name '*.py' | xargs sed -i 's/from openai /from openai_vllm /g' | |
| find openai_vllm -name '*.py' | xargs sed -i 's/openai\./openai_vllm./g' | |
| find openai_vllm -name '*.py' | xargs sed -i 's/from openai\./from openai_vllm./g' | |
| find openai_vllm -name '*.py' | xargs sed -i 's/import openai/import openai_vllm/g' | |
| ``` | |
| Assuming torch was installed with CUDA 11.8, and you have installed cuda locally in `/usr/local/cuda-11.8`, then can start in OpenAI compliant mode. E.g. for LLaMa 65B on 2 GPUs: | |
| ```bash | |
| CUDA_HOME=/usr/local/cuda-11.8 pip install vllm ray | |
| export NCCL_IGNORE_DISABLED_P2P=1 | |
| export CUDA_VISIBLE_DEVICESs=0,1 | |
| python -m vllm.entrypoints.openai.api_server --port=5000 --host=0.0.0.0 --model h2oai/h2ogpt-research-oasst1-llama-65b --tokenizer=hf-internal-testing/llama-tokenizer --tensor-parallel-size=2 --seed 1234 | |
| ``` | |
| which takes about 3 minutes until Uvicorn starts entirely so endpoint is fully ready, when one sees: | |
| ```text | |
| INFO 07-15 02:56:41 llm_engine.py:131] # GPU blocks: 496, # CPU blocks: 204 | |
| INFO 07-15 02:56:43 tokenizer.py:28] For some LLaMA-based models, initializing the fast tokenizer may take a long time. To eliminate the initialization time, consider using 'hf-internal-testing/llama-tokenizer' instead of the original tokenizer. | |
| INFO: Started server process [2442339] | |
| INFO: Waiting for application startup. | |
| INFO: Application startup complete. | |
| INFO: Uvicorn running on http://0.0.0.0:5000 (Press CTRL+C to quit) | |
| ``` | |
| Open port if want to allow access outside the server: | |
| ```bash | |
| sudo ufw allow 5000 | |
| ``` | |
| To run in interactive mode, if don't have P2P (check `nvidia-smi topo -m`) then set this env: | |
| ```bash | |
| export NCCL_IGNORE_DISABLED_P2P=1 | |
| ``` | |
| Then in python | |
| ```python | |
| from vllm import LLM | |
| llm = LLM(model='h2oai/h2ogpt-research-oasst1-llama-65b', tokenizer='hf-internal-testing/llama-tokenizer', tensor_parallel_size=2) | |
| output = llm.generate("San Franciso is a") | |
| ``` | |
| See [vLLM docs](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html). | |
| ```text | |
| (h2ollm) ubuntu@cloudvm:~/h2ogpt$ python -m vllm.entrypoints.openai.api_server --help | |
| usage: api_server.py [-h] [--host HOST] [--port PORT] [--allow-credentials] [--allowed-origins ALLOWED_ORIGINS] [--allowed-methods ALLOWED_METHODS] [--allowed-headers ALLOWED_HEADERS] [--served-model-name SERVED_MODEL_NAME] [--model MODEL] [--tokenizer TOKENIZER] | |
| [--tokenizer-mode {auto,slow}] [--download-dir DOWNLOAD_DIR] [--use-np-weights] [--use-dummy-weights] [--dtype {auto,half,bfloat16,float}] [--worker-use-ray] [--pipeline-parallel-size PIPELINE_PARALLEL_SIZE] | |
| [--tensor-parallel-size TENSOR_PARALLEL_SIZE] [--block-size {8,16,32}] [--seed SEED] [--swap-space SWAP_SPACE] [--gpu-memory-utilization GPU_MEMORY_UTILIZATION] [--max-num-batched-tokens MAX_NUM_BATCHED_TOKENS] [--max-num-seqs MAX_NUM_SEQS] | |
| [--disable-log-stats] [--engine-use-ray] [--disable-log-requests] | |
| vLLM OpenAI-Compatible RESTful API server. | |
| options: | |
| -h, --help show this help message and exit | |
| --host HOST host name | |
| --port PORT port number | |
| --allow-credentials allow credentials | |
| --allowed-origins ALLOWED_ORIGINS | |
| allowed origins | |
| --allowed-methods ALLOWED_METHODS | |
| allowed methods | |
| --allowed-headers ALLOWED_HEADERS | |
| allowed headers | |
| --served-model-name SERVED_MODEL_NAME | |
| The model name used in the API. If not specified, the model name will be the same as the huggingface name. | |
| --model MODEL name or path of the huggingface model to use | |
| --tokenizer TOKENIZER | |
| name or path of the huggingface tokenizer to use | |
| --tokenizer-mode {auto,slow} | |
| tokenizer mode. "auto" will use the fast tokenizer if available, and "slow" will always use the slow tokenizer. | |
| --download-dir DOWNLOAD_DIR | |
| directory to download and load the weights, default to the default cache dir of huggingface | |
| --use-np-weights save a numpy copy of model weights for faster loading. This can increase the disk usage by up to 2x. | |
| --use-dummy-weights use dummy values for model weights | |
| --dtype {auto,half,bfloat16,float} | |
| data type for model weights and activations. The "auto" option will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models. | |
| --worker-use-ray use Ray for distributed serving, will be automatically set when using more than 1 GPU | |
| --pipeline-parallel-size PIPELINE_PARALLEL_SIZE, -pp PIPELINE_PARALLEL_SIZE | |
| number of pipeline stages | |
| --tensor-parallel-size TENSOR_PARALLEL_SIZE, -tp TENSOR_PARALLEL_SIZE | |
| number of tensor parallel replicas | |
| --block-size {8,16,32} | |
| token block size | |
| --seed SEED random seed | |
| --swap-space SWAP_SPACE | |
| CPU swap space size (GiB) per GPU | |
| --gpu-memory-utilization GPU_MEMORY_UTILIZATION | |
| the percentage of GPU memory to be used forthe model executor | |
| --max-num-batched-tokens MAX_NUM_BATCHED_TOKENS | |
| maximum number of batched tokens per iteration | |
| --max-num-seqs MAX_NUM_SEQS | |
| maximum number of sequences per iteration | |
| --disable-log-stats disable logging statistics | |
| --engine-use-ray use Ray to start the LLM engine in a separate process as the server process. | |
| --disable-log-requests | |
| disable logging requests | |
| ``` | |
| CURL test: | |
| ```bash | |
| curl http://localhost:5000/v1/completions \ | |
| -H "Content-Type: application/json" \ | |
| -d '{ | |
| "model": "h2oai/h2ogpt-research-oasst1-llama-65b", | |
| "prompt": "San Francisco is a", | |
| "max_tokens": 7, | |
| "temperature": 0 | |
| }' | |
| ``` | |
| If started OpenAI-compliant server, then run h2oGPT: | |
| ```bash | |
| python generate.py --inference_server="vllm:0.0.0.0:5000" --base_model=h2oai/h2ogpt-oasst1-falcon-40b --langchain_mode=MyData | |
| ``` | |
| Note: `vllm_chat` ChatCompletion is not supported by vLLM project. | |
| Note vLLM has bug in stopping sequence that is does not return the last token, unlike OpenAI, so a hack is in place for `prompt_type=human_bot`, and other prompts may need similar hacks. See `fix_text()` in `src/prompter.py`. | |
| ## h2oGPT start-up vs. in-app selection | |
| When using `generate.py`, specifying the `--base_model` or `--inference_server` on the CLI is not required. One can also add any model and server URL (with optional port) in the **Model** tab at the bottom: | |
|  | |
| Enter the mode name as the same name one would use for `--base_model` and enter the server url:port as the same url (optional port) one would use for `--inference_server`. Then click `Add new Model, Lora, Server url:port` button. This adds that to the drop-down selection, and then one can load the model by clicking "Load-Unload" model button. For an inference server, the `Load 8-bit`, `Choose Devices`, `LORA`, and `GPU ID` buttons or selections are not applicable. | |
| One can also do model comparison by clicking the `Compare Mode` checkbox, and add new models and servers to each left and right models for a view like: | |
|  | |
| ## Locking Models for easy start-up or in-app comparison | |
| To avoid specifying model-related settings as independent options, and to disable loading new models, use `--model_lock` like: | |
| ```bash | |
| python generate.py --model_lock=[{'inference_server':'http://192.168.1.46:6112','base_model':'h2oai/h2ogpt-oasst1-512-12b'}] | |
| ``` | |
| where for this case the prompt_type for this base_model is in prompter.py, so it doesn't need to be specified. Note that no spaces or other white space is allowed within the double quotes for model_lock due to how CLI arguments are parsed. | |
| For two endpoints, one uses (again with no spaces in arg) | |
| ```bash | |
| python generate.py --model_lock=[{'inference_server':'http://192.168.1.46:6112','base_model':'h2oai/h2ogpt-oasst1-512-12b'},{'inference_server':'http://192.168.1.46:6114','base_model':'h2oai/h2ogpt-oasst1-512-20b'},{'inference_server':'http://192.168.1.46:6113','base_model':'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'}] | |
| ``` | |
| One can have a mix of local models, HF text-generation inference servers, Gradio generation servers, and OpenAI servers, e.g.: | |
| ```bash | |
| python generate.py --model_lock=[{'inference_server':'http://192.168.1.46:6112','base_model':'h2oai/h2ogpt-oasst1-512-12b'},{'inference_server':'http://192.168.1.46:6114','base_model':'h2oai/h2ogpt-oasst1-512-20b'},{'inference_server':'http://192.168.1.46:6113','base_model':'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'},{'inference_server':'http://192.168.0.1:6000','base_model':'TheBloke/Wizard-Vicuna-13B-Uncensored-HF','prompt_type':'instruct_vicuna'},{'inference_server':'http://192.168.0.245:6000','base_model':'h2oai/h2ogpt-oasst1-falcon-40b'},{'inference_server':'http://192.168.1.46:7860','base_model':'h2oai/h2ogpt-oasst1-512-12b'},{'inference_server':'http://192.168.0.1:7000','base_model':'h2oai/h2ogpt-research-oasst1-llama-65b','prompt_type':'human_bot'},{'inference_server':'openai_chat','base_model':'gpt-3.5-turbo'}] --model_lock_columns=4 | |
| ``` | |
| where the lock columns of 4 makes a grid of chatbots with 4 columns. | |
| If you run in bash and need to use an authentication for the Hugging Face text generation inference server, then that can be passed: | |
| ```text | |
| {'inference_server':'https://server.h2o.ai USER AUTH','base_model':'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'} | |
| ``` | |
| i.e. 4 spaces between each IP, USER, and AUTH. USER should be the user and AUTH be the token. | |
| When bringing up `generate.py` with any inference server, one can set `REQUEST_TIMEOUT` ENV to smaller value than default of 60 seconds to get server up faster if one has many inaccessible endpoints you don't mind skipping. E.g. set `REQUEST_TIMEOUT=5`. One can also choose the timeout overall for each chat turn using env `REQUEST_TIMEOUT_FAST` that defaults to 10 seconds. | |
| Note: The client API calls for chat APIs (i.e. `instruction` type for `instruction`, `instruction_bot`, `instruction_bot_score`, and similar for `submit` and `retry` types) require managing all chat sessions via API. However, the `nochat` APIs only use the first model in the list of chats or model_lock list. | |
|  | |
| ### System info from gradio server | |
| ```python | |
| import json | |
| from gradio_client import Client | |
| ADMIN_PASS = '' | |
| HOST = "http://localhost:7860" | |
| client = Client(HOST) | |
| api_name = '/system_info_dict' | |
| res = client.predict(ADMIN_PASS, api_name=api_name) | |
| res = json.loads(res) | |
| print(res) | |
| # e.g. | |
| print(res['base_model']) | |
| print(res['hash']) | |
| ``` | |
| where one should set `ADMIN_PASS` to pass set for that instance and change `HOST` to the desired host. | |