galihboy's picture
Upload 2 files
3865f49 verified
import gradio as gr
from sentence_transformers import SentenceTransformer
import json
import numpy as np
import os
import httpx
import hashlib
# Load environment variables from .env file (optional, for local development)
try:
from dotenv import load_dotenv
load_dotenv()
print("βœ… Loaded .env file")
except ImportError:
print("ℹ️ python-dotenv not installed, using system environment variables")
# Google GenAI SDK (new library) - optional, graceful fallback if not available
try:
from google import genai
from google.genai import types
GENAI_AVAILABLE = True
print("βœ… google-genai loaded successfully")
except ImportError as e:
GENAI_AVAILABLE = False
print(f"⚠️ google-genai not available: {e}")
genai = None
types = None
# ==================== CONFIGURATION ====================
# Model - akan auto-download dari HF Hub saat pertama kali
HF_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
# Path lokal untuk development (opsional, diabaikan jika tidak ada)
LOCAL_MODEL_PATH = r"E:\huggingface_models\hub\models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2\snapshots"
# Supabase configuration (dari environment variables untuk keamanan)
# Di HF Space: Settings > Repository secrets
# Di lokal: set environment variable atau gunakan default untuk testing
SUPABASE_URL = os.environ.get("SUPABASE_URL", "")
SUPABASE_KEY = os.environ.get("SUPABASE_KEY", "")
# Gemini API configuration with key rotation
GEMINI_MODEL = os.environ.get("GEMINI_MODEL", "gemini-2.5-pro") # atau gemini-2.5-flash, gemini-2.5-flash-lite
# Load multiple API keys for rotation
GEMINI_API_KEYS = []
for i in range(1, 10): # Support up to 9 keys
key = os.environ.get(f"GEMINI_API_KEY_{i}", "")
if key:
GEMINI_API_KEYS.append(key)
# Fallback to single key if no numbered keys found
if not GEMINI_API_KEYS:
single_key = os.environ.get("GEMINI_API_KEY", "")
if single_key:
GEMINI_API_KEYS.append(single_key)
# Track current key index for rotation
current_key_index = 0
def get_gemini_client():
"""Get Gemini client with current API key"""
global current_key_index
if not GENAI_AVAILABLE or genai is None:
return None
if not GEMINI_API_KEYS:
return None
return genai.Client(api_key=GEMINI_API_KEYS[current_key_index])
def rotate_api_key():
"""Rotate to next API key"""
global current_key_index
if len(GEMINI_API_KEYS) > 1:
current_key_index = (current_key_index + 1) % len(GEMINI_API_KEYS)
print(f"πŸ”„ Rotated to API key #{current_key_index + 1}")
return current_key_index
def call_gemini_with_retry(prompt: str, max_retries: int = None):
"""Call Gemini API with automatic key rotation on rate limit"""
global current_key_index
if not GEMINI_API_KEYS:
return None, "No API keys configured"
if max_retries is None:
max_retries = len(GEMINI_API_KEYS)
last_error = None
for attempt in range(max_retries):
try:
client = get_gemini_client()
response = client.models.generate_content(
model=GEMINI_MODEL,
contents=prompt
)
return response, None
except Exception as e:
error_str = str(e).lower()
last_error = str(e)
# Check if rate limit error
if "429" in error_str or "rate" in error_str or "quota" in error_str or "resource" in error_str:
print(f"⚠️ Rate limit hit on key #{current_key_index + 1}: {e}")
rotate_api_key()
continue
else:
# Non-rate-limit error, don't retry
return None, str(e)
return None, f"All API keys exhausted. Last error: {last_error}"
# Initialize and print status
if GEMINI_API_KEYS:
print(f"βœ… Gemini configured with {len(GEMINI_API_KEYS)} API key(s)")
print(f" Model: {GEMINI_MODEL}")
else:
print("⚠️ No Gemini API keys found")
def get_model_path():
"""Deteksi environment dan return path model yang sesuai"""
# Cek apakah folder lokal ada
if os.path.exists(LOCAL_MODEL_PATH):
# Cari snapshot terbaru
snapshots = os.listdir(LOCAL_MODEL_PATH)
if snapshots:
return os.path.join(LOCAL_MODEL_PATH, snapshots[0])
# Fallback ke HF Hub (untuk deployment di Space)
return HF_MODEL_NAME
# Load model saat startup
print("Loading model...")
model = None
try:
model_path = get_model_path()
print(f"Using model from: {model_path}")
model = SentenceTransformer(model_path)
print("βœ… Model loaded successfully!")
except Exception as e:
print(f"❌ Failed to load model: {e}")
model = None
def get_embedding(text: str):
"""Generate embedding untuk single text"""
if model is None:
return {"error": "Model not loaded"}
if not text or not text.strip():
return {"error": "Text tidak boleh kosong"}
try:
embedding = model.encode(text.strip())
return {"embedding": embedding.tolist()}
except Exception as e:
return {"error": str(e)}
def get_embeddings_batch(texts_json: str):
"""Generate embeddings untuk multiple texts (JSON array)"""
try:
texts = json.loads(texts_json)
if not isinstance(texts, list):
return {"error": "Input harus JSON array"}
if len(texts) == 0:
return {"error": "Array tidak boleh kosong"}
# Filter empty strings
texts = [t.strip() for t in texts if t and t.strip()]
if len(texts) == 0:
return {"error": "Semua text kosong"}
embeddings = model.encode(texts)
return {"embeddings": embeddings.tolist()}
except json.JSONDecodeError:
return {"error": "Invalid JSON format. Gunakan format: [\"teks 1\", \"teks 2\"]"}
except Exception as e:
return {"error": str(e)}
def calculate_similarity(text1: str, text2: str):
"""Hitung cosine similarity antara dua teks"""
if not text1 or not text1.strip():
return {"error": "Text 1 tidak boleh kosong"}
if not text2 or not text2.strip():
return {"error": "Text 2 tidak boleh kosong"}
try:
embeddings = model.encode([text1.strip(), text2.strip()])
# Cosine similarity
similarity = np.dot(embeddings[0], embeddings[1]) / (
np.linalg.norm(embeddings[0]) * np.linalg.norm(embeddings[1])
)
return {
"similarity": float(similarity),
"percentage": f"{similarity * 100:.2f}%"
}
except Exception as e:
return {"error": str(e)}
# ==================== SUPABASE PROXY FUNCTIONS ====================
def get_supabase_headers():
"""Get headers untuk Supabase API calls"""
return {
"apikey": SUPABASE_KEY,
"Authorization": f"Bearer {SUPABASE_KEY}",
"Content-Type": "application/json",
"Prefer": "return=representation"
}
def db_get_all_embeddings():
"""Ambil semua embeddings dari Supabase"""
if not SUPABASE_URL or not SUPABASE_KEY:
return {"error": "Supabase not configured"}
try:
url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings?select=nim,content_hash,embedding_combined,embedding_judul,embedding_deskripsi,embedding_problem,embedding_metode,nama,judul"
with httpx.Client(timeout=30.0) as client:
response = client.get(url, headers=get_supabase_headers())
if response.status_code == 200:
return {"data": response.json(), "count": len(response.json())}
else:
return {"error": f"Supabase error: {response.status_code}", "detail": response.text}
except Exception as e:
return {"error": str(e)}
def db_get_embedding(nim: str, content_hash: str):
"""Ambil embedding untuk NIM dan content_hash tertentu"""
if not SUPABASE_URL or not SUPABASE_KEY:
return {"error": "Supabase not configured"}
try:
url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings?nim=eq.{nim}&content_hash=eq.{content_hash}&select=*"
with httpx.Client(timeout=30.0) as client:
response = client.get(url, headers=get_supabase_headers())
if response.status_code == 200:
data = response.json()
return {"data": data[0] if data else None, "found": len(data) > 0}
else:
return {"error": f"Supabase error: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
def db_save_embedding(data_json: str):
"""Simpan embedding ke Supabase (upsert)"""
if not SUPABASE_URL or not SUPABASE_KEY:
return {"error": "Supabase not configured"}
try:
data = json.loads(data_json)
# Validate required fields
if not data.get("nim") or not data.get("content_hash"):
return {"error": "nim and content_hash are required"}
if not data.get("embedding_combined"):
return {"error": "embedding_combined is required"}
url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings"
headers = get_supabase_headers()
headers["Prefer"] = "resolution=merge-duplicates,return=representation"
payload = {
"nim": data["nim"],
"content_hash": data["content_hash"],
"embedding_combined": data["embedding_combined"],
"embedding_judul": data.get("embedding_judul"),
"embedding_deskripsi": data.get("embedding_deskripsi"),
"embedding_problem": data.get("embedding_problem"),
"embedding_metode": data.get("embedding_metode"),
"nama": data.get("nama"),
"judul": data.get("judul")
}
with httpx.Client(timeout=30.0) as client:
response = client.post(url, headers=headers, json=payload)
if response.status_code in [200, 201]:
return {"success": True, "data": response.json()}
else:
return {"error": f"Supabase error: {response.status_code}", "detail": response.text}
except json.JSONDecodeError:
return {"error": "Invalid JSON format"}
except Exception as e:
return {"error": str(e)}
def db_check_connection():
"""Test koneksi ke Supabase"""
if not SUPABASE_URL or not SUPABASE_KEY:
return {"connected": False, "error": "Supabase URL or KEY not configured"}
try:
url = f"{SUPABASE_URL}/rest/v1/proposal_embeddings?select=id&limit=1"
with httpx.Client(timeout=10.0) as client:
response = client.get(url, headers=get_supabase_headers())
return {
"connected": response.status_code == 200,
"status_code": response.status_code,
"supabase_url": SUPABASE_URL[:30] + "..." if len(SUPABASE_URL) > 30 else SUPABASE_URL
}
except Exception as e:
return {"connected": False, "error": str(e)}
# ==================== LLM CACHE FUNCTIONS (SUPABASE) ====================
def db_get_llm_analysis(pair_hash: str):
"""Ambil cached LLM analysis dari Supabase by pair_hash"""
if not SUPABASE_URL or not SUPABASE_KEY:
return None
try:
url = f"{SUPABASE_URL}/rest/v1/llm_analysis?pair_hash=eq.{pair_hash}&select=*"
with httpx.Client(timeout=10.0) as client:
response = client.get(url, headers=get_supabase_headers())
if response.status_code == 200:
data = response.json()
if data and len(data) > 0:
result = data[0]
# Parse similar_aspects from JSONB
if isinstance(result.get('similar_aspects'), str):
result['similar_aspects'] = json.loads(result['similar_aspects'])
result['from_cache'] = True
return result
return None
except Exception as e:
print(f"Error getting cached LLM analysis: {e}")
return None
def db_save_llm_analysis(pair_hash: str, proposal1_judul: str, proposal2_judul: str, result: dict):
"""Simpan LLM analysis result ke Supabase"""
if not SUPABASE_URL or not SUPABASE_KEY:
return False
try:
url = f"{SUPABASE_URL}/rest/v1/llm_analysis"
headers = get_supabase_headers()
headers["Prefer"] = "resolution=merge-duplicates" # Upsert
payload = {
"pair_hash": pair_hash,
"proposal1_judul": proposal1_judul[:500] if proposal1_judul else "",
"proposal2_judul": proposal2_judul[:500] if proposal2_judul else "",
"similarity_score": result.get("similarity_score"),
"verdict": result.get("verdict"),
"reasoning": result.get("reasoning"),
"saran": result.get("saran"),
"similar_aspects": json.dumps(result.get("similar_aspects", {})),
"differentiator": result.get("differentiator"),
"model_used": result.get("model_used", GEMINI_MODEL)
}
with httpx.Client(timeout=10.0) as client:
response = client.post(url, headers=headers, json=payload)
if response.status_code in [200, 201]:
print(f"βœ… LLM result cached: {pair_hash[:8]}...")
return True
else:
print(f"⚠️ Failed to cache LLM result: {response.status_code}")
return False
except Exception as e:
print(f"Error saving LLM analysis: {e}")
return False
# ==================== LLM FUNCTIONS (GEMINI) ====================
def generate_pair_hash(proposal1: dict, proposal2: dict) -> str:
"""Generate unique hash untuk pasangan proposal"""
def proposal_hash(p):
content = f"{p.get('nim', '')}|{p.get('judul', '')}|{p.get('deskripsi', '')}|{p.get('problem', '')}|{p.get('metode', '')}"
return hashlib.md5(content.encode()).hexdigest()[:16]
h1 = proposal_hash(proposal1)
h2 = proposal_hash(proposal2)
# Sort untuk konsistensi (A,B = B,A)
sorted_hashes = sorted([h1, h2])
return hashlib.md5(f"{sorted_hashes[0]}|{sorted_hashes[1]}".encode()).hexdigest()[:32]
def llm_analyze_pair(proposal1_json: str, proposal2_json: str, use_cache: bool = True):
"""Analisis kemiripan dua proposal menggunakan Gemini LLM"""
if not GEMINI_API_KEYS:
return {"error": "Gemini API key not configured. Set GEMINI_API_KEY_1, GEMINI_API_KEY_2, etc in .env file"}
try:
proposal1 = json.loads(proposal1_json)
proposal2 = json.loads(proposal2_json)
except json.JSONDecodeError:
return {"error": "Invalid JSON format for proposals"}
# Generate pair hash untuk caching
pair_hash = generate_pair_hash(proposal1, proposal2)
# Check cache first
if use_cache:
cached_result = db_get_llm_analysis(pair_hash)
if cached_result:
print(f"πŸ“¦ Using cached LLM result: {pair_hash[:8]}...")
return cached_result
# Build prompt
prompt = f"""Anda adalah penilai kemiripan proposal skripsi yang ahli dan berpengalaman. Analisis dua proposal berikut dengan KRITERIA AKADEMIK yang benar.
ATURAN PENILAIAN PENTING:
1. Proposal skripsi dianggap BERMASALAH hanya jika KETIGA aspek ini SAMA: Topik/Domain + Dataset/Objek Penelitian + Metode/Algoritma
2. Jika METODE BERBEDA (walaupun topik & dataset sama) β†’ AMAN, karena memberikan kontribusi ilmiah berbeda
3. Jika DATASET/OBJEK BERBEDA (walaupun topik & metode sama) β†’ AMAN, karena studi kasus berbeda
4. Jika TOPIK/DOMAIN BERBEDA β†’ AMAN
5. Penelitian replikasi dengan variasi adalah HAL YANG WAJAR dalam dunia akademik
PROPOSAL 1:
- NIM: {proposal1.get('nim', 'N/A')}
- Nama: {proposal1.get('nama', 'N/A')}
- Judul: {proposal1.get('judul', 'N/A')}
- Deskripsi: {proposal1.get('deskripsi', 'N/A')[:500] if proposal1.get('deskripsi') else 'N/A'}
- Problem Statement: {proposal1.get('problem', 'N/A')[:500] if proposal1.get('problem') else 'N/A'}
- Metode: {proposal1.get('metode', 'N/A')}
PROPOSAL 2:
- NIM: {proposal2.get('nim', 'N/A')}
- Nama: {proposal2.get('nama', 'N/A')}
- Judul: {proposal2.get('judul', 'N/A')}
- Deskripsi: {proposal2.get('deskripsi', 'N/A')[:500] if proposal2.get('deskripsi') else 'N/A'}
- Problem Statement: {proposal2.get('problem', 'N/A')[:500] if proposal2.get('problem') else 'N/A'}
- Metode: {proposal2.get('metode', 'N/A')}
ANALISIS dengan cermat, lalu berikan output JSON (HANYA JSON, tanpa markdown):
{{
"similarity_score": <0-100, tinggi HANYA jika topik+dataset+metode SEMUA sama>,
"verdict": "<BERMASALAH jika score>=80, PERLU_REVIEW jika 50-79, AMAN jika <50>",
"similar_aspects": {{
"topik": <true/false - apakah tema/domain penelitian sama>,
"dataset": <true/false - apakah objek/data penelitian sama>,
"metode": <true/false - apakah algoritma/metode sama>,
"pendekatan": <true/false - apakah framework/pendekatan sama>
}},
"differentiator": "<aspek pembeda utama: metode/dataset/domain/tidak_ada>",
"reasoning": "<analisis mendalam 4-5 kalimat: jelaskan persamaan dan perbedaan dari aspek topik, dataset, dan metode. Jelaskan mengapa proposal ini aman/bermasalah berdasarkan kriteria akademik>",
"saran": "<nasihat konstruktif 2-3 kalimat untuk mahasiswa: jika aman, beri saran penguatan diferensiasi. Jika bermasalah, beri warning dan alternatif arah penelitian>"
}}"""
# Call Gemini API with retry/rotation
response, error = call_gemini_with_retry(prompt)
if error:
return {"error": f"Gemini API error: {error}"}
try:
# Parse response
response_text = response.text.strip()
# Clean response (remove markdown code blocks if present)
if response_text.startswith("```"):
lines = response_text.split("\n")
response_text = "\n".join(lines[1:-1]) # Remove first and last lines
result = json.loads(response_text)
result["pair_hash"] = pair_hash
result["model_used"] = GEMINI_MODEL
result["api_key_used"] = current_key_index + 1
result["from_cache"] = False
# Save to cache
db_save_llm_analysis(
pair_hash=pair_hash,
proposal1_judul=proposal1.get('judul', ''),
proposal2_judul=proposal2.get('judul', ''),
result=result
)
return result
except json.JSONDecodeError as e:
return {
"error": "Failed to parse LLM response as JSON",
"raw_response": response_text if 'response_text' in dir() else "No response",
"parse_error": str(e)
}
def llm_check_status():
"""Check Gemini API status"""
if not GENAI_AVAILABLE:
return {
"configured": False,
"error": "google-genai package not available"
}
if not GEMINI_API_KEYS:
return {
"configured": False,
"error": "No GEMINI_API_KEY found in environment"
}
response, error = call_gemini_with_retry("Respond with only: OK")
if error:
return {
"configured": True,
"total_keys": len(GEMINI_API_KEYS),
"model": GEMINI_MODEL,
"status": "error",
"error": error
}
return {
"configured": True,
"total_keys": len(GEMINI_API_KEYS),
"current_key": current_key_index + 1,
"model": GEMINI_MODEL,
"status": "connected",
"test_response": response.text.strip()[:50]
}
def llm_analyze_simple(judul1: str, judul2: str, metode1: str, metode2: str):
"""Simplified analysis - hanya judul dan metode (untuk testing cepat)"""
if not GEMINI_API_KEYS:
return {"error": "Gemini API key not configured"}
prompt = f"""Anda adalah penilai kemiripan proposal skripsi yang ahli. Bandingkan dua proposal berikut dengan KRITERIA AKADEMIK yang benar.
ATURAN PENILAIAN PENTING:
1. Proposal skripsi dianggap BERMASALAH hanya jika KETIGA aspek ini SAMA: Topik/Domain + Dataset + Metode
2. Jika METODE BERBEDA (walaupun topik sama) β†’ AMAN, karena kontribusi berbeda
3. Jika DATASET BERBEDA (walaupun topik & metode sama) β†’ AMAN, karena studi kasus berbeda
4. Jika TOPIK/DOMAIN BERBEDA β†’ AMAN
Proposal 1:
- Judul: {judul1}
- Metode: {metode1}
Proposal 2:
- Judul: {judul2}
- Metode: {metode2}
ANALISIS dengan cermat, lalu berikan output JSON (HANYA JSON, tanpa markdown):
{{
"similarity_score": <0-100, tinggi HANYA jika topik+dataset+metode SEMUA sama>,
"verdict": "<BERMASALAH jika score>=80, PERLU_REVIEW jika 50-79, AMAN jika <50>",
"topik_sama": <true/false>,
"metode_sama": <true/false>,
"differentiator": "<aspek pembeda utama: metode/dataset/domain/tidak_ada>",
"reasoning": "<analisis mendalam 3-4 kalimat: jelaskan persamaan, perbedaan, dan mengapa aman/bermasalah>",
"saran": "<nasihat konstruktif untuk mahasiswa, misal: cara memperkuat diferensiasi, atau warning jika terlalu mirip>"
}}"""
response, error = call_gemini_with_retry(prompt)
if error:
return {"error": error}
try:
response_text = response.text.strip()
if response_text.startswith("```"):
lines = response_text.split("\n")
response_text = "\n".join(lines[1:-1])
result = json.loads(response_text)
result["model_used"] = GEMINI_MODEL
result["api_key_used"] = current_key_index + 1
return result
except json.JSONDecodeError as e:
return {"error": f"Failed to parse response: {e}", "raw": response_text}
# Gradio Interface
with gr.Blocks(title="Semantic Embedding API") as demo:
gr.Markdown("# πŸ”€ Semantic Embedding API")
gr.Markdown("API untuk menghasilkan text embedding menggunakan `paraphrase-multilingual-MiniLM-L12-v2`")
gr.Markdown("**Model**: Multilingual, mendukung 50+ bahasa termasuk Bahasa Indonesia")
with gr.Tab("πŸ”’ Single Embedding"):
gr.Markdown("Generate embedding vector untuk satu teks")
text_input = gr.Textbox(
label="Input Text",
placeholder="Masukkan teks untuk di-embed...",
lines=2
)
single_output = gr.JSON(label="Embedding Result")
single_btn = gr.Button("Generate Embedding", variant="primary")
single_btn.click(fn=get_embedding, inputs=text_input, outputs=single_output, api_name="get_embedding")
with gr.Tab("πŸ“¦ Batch Embedding"):
gr.Markdown("Generate embeddings untuk multiple teks sekaligus")
batch_input = gr.Textbox(
label="JSON Array of Texts",
placeholder='["teks pertama", "teks kedua", "teks ketiga"]',
lines=4
)
batch_output = gr.JSON(label="Embeddings Result")
batch_btn = gr.Button("Generate Embeddings", variant="primary")
batch_btn.click(fn=get_embeddings_batch, inputs=batch_input, outputs=batch_output, api_name="get_embeddings_batch")
with gr.Tab("πŸ“Š Similarity Check"):
gr.Markdown("Hitung kemiripan semantik antara dua teks")
with gr.Row():
sim_text1 = gr.Textbox(label="Text 1", placeholder="Teks pertama...", lines=2)
sim_text2 = gr.Textbox(label="Text 2", placeholder="Teks kedua...", lines=2)
sim_output = gr.JSON(label="Similarity Result")
sim_btn = gr.Button("Calculate Similarity", variant="primary")
sim_btn.click(fn=calculate_similarity, inputs=[sim_text1, sim_text2], outputs=sim_output, api_name="calculate_similarity")
with gr.Tab("πŸ’Ύ Database (Supabase)"):
gr.Markdown("### Supabase Cache Operations")
gr.Markdown("Proxy untuk akses Supabase (API key aman di server)")
gr.Markdown("*Note: Operasi write (save) hanya tersedia melalui API untuk keamanan.*")
with gr.Row():
db_check_btn = gr.Button("πŸ”Œ Check Connection", variant="secondary")
db_check_output = gr.JSON(label="Connection Status")
db_check_btn.click(fn=db_check_connection, outputs=db_check_output, api_name="db_check_connection")
gr.Markdown("---")
gr.Markdown("#### Get All Cached Embeddings")
db_all_btn = gr.Button("πŸ“₯ Get All Embeddings", variant="primary")
db_all_output = gr.JSON(label="All Embeddings")
db_all_btn.click(fn=db_get_all_embeddings, outputs=db_all_output, api_name="db_get_all_embeddings")
gr.Markdown("---")
gr.Markdown("#### Get Single Embedding by NIM")
with gr.Row():
db_nim_input = gr.Textbox(label="NIM", placeholder="10121xxx")
db_hash_input = gr.Textbox(label="Content Hash", placeholder="abc123...")
db_get_btn = gr.Button("πŸ” Get Embedding", variant="primary")
db_get_output = gr.JSON(label="Embedding Result")
db_get_btn.click(fn=db_get_embedding, inputs=[db_nim_input, db_hash_input], outputs=db_get_output, api_name="db_get_embedding")
with gr.Tab("πŸ€– LLM Analysis (Gemini)"):
gr.Markdown("### Analisis Kemiripan dengan LLM")
gr.Markdown("Menggunakan Google Gemini untuk analisis mendalam dengan penjelasan")
with gr.Row():
llm_check_btn = gr.Button("πŸ”Œ Check Gemini Status", variant="secondary")
llm_check_output = gr.JSON(label="Gemini Status")
llm_check_btn.click(fn=llm_check_status, outputs=llm_check_output, api_name="llm_check_status")
gr.Markdown("---")
gr.Markdown("#### Quick Analysis (Judul + Metode saja)")
with gr.Row():
with gr.Column():
llm_judul1 = gr.Textbox(label="Judul Proposal 1", placeholder="Analisis Sentimen dengan SVM...", lines=2)
llm_metode1 = gr.Textbox(label="Metode 1", placeholder="Support Vector Machine")
with gr.Column():
llm_judul2 = gr.Textbox(label="Judul Proposal 2", placeholder="Klasifikasi Sentimen dengan SVM...", lines=2)
llm_metode2 = gr.Textbox(label="Metode 2", placeholder="Support Vector Machine")
llm_simple_btn = gr.Button("πŸš€ Analyze (Quick)", variant="primary")
llm_simple_output = gr.JSON(label="Quick Analysis Result")
llm_simple_btn.click(
fn=llm_analyze_simple,
inputs=[llm_judul1, llm_judul2, llm_metode1, llm_metode2],
outputs=llm_simple_output,
api_name="llm_analyze_simple"
)
gr.Markdown("---")
gr.Markdown("#### Full Analysis (Complete Proposal Data)")
gr.Markdown("*Hasil di-cache ke Supabase. Request yang sama akan menggunakan cache.*")
with gr.Row():
llm_proposal1 = gr.Textbox(
label="Proposal 1 (JSON)",
placeholder='{"nim": "123", "nama": "Ahmad", "judul": "...", "deskripsi": "...", "problem": "...", "metode": "..."}',
lines=5
)
llm_proposal2 = gr.Textbox(
label="Proposal 2 (JSON)",
placeholder='{"nim": "456", "nama": "Budi", "judul": "...", "deskripsi": "...", "problem": "...", "metode": "..."}',
lines=5
)
with gr.Row():
llm_use_cache = gr.Checkbox(label="Gunakan Cache", value=True, info="Uncheck untuk force refresh dari Gemini")
llm_full_btn = gr.Button("πŸ” Analyze (Full)", variant="primary")
llm_full_output = gr.JSON(label="Full Analysis Result")
llm_full_btn.click(
fn=llm_analyze_pair,
inputs=[llm_proposal1, llm_proposal2, llm_use_cache],
outputs=llm_full_output,
api_name="llm_analyze_pair"
)
gr.Markdown("""
**Output mencakup:**
- `similarity_score`: Skor 0-100 (tinggi hanya jika topik+dataset+metode sama)
- `verdict`: BERMASALAH / PERLU_REVIEW / AMAN
- `reasoning`: Analisis mendalam dari AI
- `similar_aspects`: Aspek yang mirip (topik/dataset/metode/pendekatan)
- `differentiator`: Pembeda utama
- `saran`: Nasihat untuk mahasiswa
- `from_cache`: true jika hasil dari cache
""")
with gr.Accordion("πŸ“‘ API Usage (untuk Developer)", open=False):
gr.Markdown("""
### Endpoints
#### Embedding
- `get_embedding` - Single text embedding
- `get_embeddings_batch` - Batch text embeddings
- `calculate_similarity` - Compare two texts
#### Database (Supabase Proxy)
- `db_check_connection` - Test Supabase connection
- `db_get_all_embeddings` - Get all cached embeddings
- `db_get_embedding` - Get embedding by NIM + hash
- `db_save_embedding` - Save embedding to cache
### Example API Call
```javascript
// Get all cached embeddings
const response = await fetch("YOUR_SPACE_URL/gradio_api/call/db_get_all_embeddings", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ data: [] })
});
const result = await response.json();
const eventId = result.event_id;
// Get result
const dataResponse = await fetch(`YOUR_SPACE_URL/gradio_api/call/db_get_all_embeddings/${eventId}`);
```
""")
gr.Markdown("---")
gr.Markdown("*Dibuat untuk Monitoring Proposal Skripsi KK E - UNIKOM*")
# Hidden API-only endpoints (tidak tampil di UI, tapi bisa diakses via API)
with gr.Row(visible=False):
api_save_input = gr.Textbox()
api_save_output = gr.JSON()
api_save_btn = gr.Button()
api_save_btn.click(fn=db_save_embedding, inputs=api_save_input, outputs=api_save_output, api_name="db_save_embedding")
# Launch dengan API enabled
demo.launch()