File size: 11,733 Bytes
6e327e0
97ae321
8fc4073
 
 
 
 
2187ded
6e327e0
 
8fc4073
97ae321
8fc4073
 
 
2187ded
97ae321
 
 
 
 
 
 
 
 
6e327e0
97ae321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187ded
97ae321
165f68d
97ae321
2187ded
 
 
 
 
 
6e327e0
97ae321
 
165f68d
97ae321
 
 
 
 
 
6e327e0
2187ded
 
 
 
 
6e327e0
2187ded
 
 
 
 
97ae321
165f68d
97ae321
 
 
 
 
 
 
165f68d
 
 
 
 
 
2187ded
 
 
165f68d
 
 
2187ded
 
 
 
 
 
 
 
 
 
 
 
 
6e327e0
2187ded
 
 
 
 
 
 
 
 
 
 
165f68d
 
6e327e0
 
 
165f68d
 
 
97ae321
165f68d
 
6e327e0
2187ded
6e327e0
 
 
 
 
 
 
165f68d
 
 
 
 
 
2187ded
97ae321
2187ded
165f68d
 
2187ded
165f68d
 
 
 
 
 
 
 
97ae321
8fc4073
 
97ae321
8fc4073
165f68d
 
 
 
 
 
 
2187ded
97ae321
2187ded
8fc4073
97ae321
8fc4073
2187ded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e327e0
2187ded
 
 
 
 
 
8fc4073
2187ded
 
165f68d
97ae321
2187ded
 
165f68d
2187ded
165f68d
2187ded
165f68d
 
2187ded
8fc4073
165f68d
 
 
8fc4073
 
97ae321
 
8fc4073
2187ded
 
 
 
 
 
 
 
6e327e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# app.py β€” Age-first + FAST group cartoons (SD-Turbo), single page (HF Spaces safe)

import os
os.environ["TRANSFORMERS_NO_TF"] = "1"
os.environ["TRANSFORMERS_NO_FLAX"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

import math
from typing import Optional

import gradio as gr
from PIL import Image, ImageDraw
import numpy as np
import torch

# ------------------ Age estimator ------------------
from transformers import AutoImageProcessor, AutoModelForImageClassification

HF_MODEL_ID = "nateraw/vit-age-classifier"
AGE_RANGE_TO_MID = {
    "0-2": 1, "3-9": 6, "10-19": 15, "20-29": 25, "30-39": 35,
    "40-49": 45, "50-59": 55, "60-69": 65, "70+": 75
}

class PretrainedAgeEstimator:
    def __init__(self, model_id: str = HF_MODEL_ID, device: Optional[str] = None):
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.processor = AutoImageProcessor.from_pretrained(model_id, use_fast=True)
        self.model = AutoModelForImageClassification.from_pretrained(model_id)
        self.model.to(self.device).eval()
        self.id2label = self.model.config.id2label

    @torch.inference_mode()
    def predict(self, img: Image.Image, topk: int = 5):
        if img.mode != "RGB":
            img = img.convert("RGB")
        inputs = self.processor(images=img, return_tensors="pt").to(self.device)
        logits = self.model(**inputs).logits
        probs = logits.softmax(dim=-1).squeeze(0)
        k = min(topk, probs.numel())
        values, indices = torch.topk(probs, k=k)
        top = [(self.id2label[i.item()], float(v.item())) for i, v in zip(indices, values)]
        expected = sum(AGE_RANGE_TO_MID.get(self.id2label[i], 35) * float(p)
                       for i, p in enumerate(probs))
        return expected, top

# ------------------ Face detection (single & group) ------------------
from facenet_pytorch import MTCNN

class FaceCropper:
    """
    Detect faces.
    - detect_one_wide: returns (crop_with_margin, annotated)
    - detect_all_wide: returns (list[crops], annotated, list[boxes])
    Boxes are (x1,y1,x2,y2) floats.
    """
    def __init__(self, device: Optional[str] = None, margin_scale: float = 1.8):
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.mtcnn = MTCNN(keep_all=True, device=self.device)
        self.margin_scale = margin_scale

    def _ensure_pil(self, img):
        if isinstance(img, Image.Image):
            return img.convert("RGB")
        return Image.fromarray(img).convert("RGB")

    def _expand_box(self, box, W, H, aspect=0.8):  # ~4:5 portrait (w/h=0.8)
        x1, y1, x2, y2 = box
        cx, cy = (x1 + x2)/2, (y1 + y2)/2
        w, h = (x2 - x1), (y2 - y1)
        side = max(w, h) * self.margin_scale
        tw = side
        th = side / aspect  # taller than wide
        nx1 = int(max(0, cx - tw/2)); nx2 = int(min(W, cx + tw/2))
        ny1 = int(max(0, cy - th/2)); ny2 = int(min(H, cy + th/2))
        return nx1, ny1, nx2, ny2

    def detect_one_wide(self, img):
        pil = self._ensure_pil(img)
        W, H = pil.size
        boxes, probs = self.mtcnn.detect(pil)

        annotated = pil.copy()
        draw = ImageDraw.Draw(annotated)
        if boxes is None or len(boxes) == 0:
            return None, annotated

        # draw all boxes
        for b, p in zip(boxes, probs):
            bx1, by1, bx2, by2 = map(float, b)
            draw.rectangle([bx1, by1, bx2, by2], outline=(255, 0, 0), width=3)
            draw.text((bx1, max(0, by1-12)), f"{p:.2f}", fill=(255, 0, 0))

        # choose largest
        idx = int(np.argmax([(b[2]-b[0])*(b[3]-b[1]) for b in boxes]))
        nx1, ny1, nx2, ny2 = self._expand_box(boxes[idx], W, H)
        crop = pil.crop((nx1, ny1, nx2, ny2))
        return crop, annotated

    def detect_all_wide(self, img):
        pil = self._ensure_pil(img)
        W, H = pil.size
        boxes, probs = self.mtcnn.detect(pil)

        annotated = pil.copy()
        draw = ImageDraw.Draw(annotated)
        crops = []
        ordered = []

        if boxes is None or len(boxes) == 0:
            return crops, annotated, []

        # sort roughly left->right for table order
        for b, p in sorted(zip(boxes, probs), key=lambda x: (x[0][0]+x[0][2])/2):
            bx1, by1, bx2, by2 = map(float, b)
            draw.rectangle([bx1, by1, bx2, by2], outline=(0, 200, 255), width=3)
            draw.text((bx1, max(0, by1-12)), f"{p:.2f}", fill=(0, 200, 255))

            nx1, ny1, nx2, ny2 = self._expand_box(b, W, H)
            crops.append(pil.crop((nx1, ny1, nx2, ny2)))
            ordered.append((bx1, by1, bx2, by2))

        return crops, annotated, ordered

# ------------------ FAST Cartoonizer (SD-Turbo) ------------------
from diffusers import AutoPipelineForImage2Image
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor

TURBO_ID = "stabilityai/sd-turbo"

def load_turbo_pipe(device):
    dtype = torch.float16 if (device == "cuda") else torch.float32
    pipe = AutoPipelineForImage2Image.from_pretrained(
        TURBO_ID,
        dtype=dtype,           # βœ… no deprecation warning
    ).to(device)
    # safety checker ON for public Spaces
    pipe.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker"
    )
    pipe.feature_extractor = AutoFeatureExtractor.from_pretrained(
        "CompVis/stable-diffusion-safety-checker"
    )
    try:
        pipe.enable_attention_slicing()
    except Exception:
        pass
    return pipe

# init models once
age_est = PretrainedAgeEstimator()
cropper = FaceCropper(device=age_est.device, margin_scale=1.9)
sd_pipe = load_turbo_pipe(age_est.device)

# prompts
DEFAULT_POSITIVE = (
    "beautiful princess portrait, elegant gown, tiara, soft magical lighting, "
    "sparkles, dreamy castle background, painterly, clean lineart, vibrant but natural colors, "
    "storybook illustration, high quality"
)
DEFAULT_NEGATIVE = (
    "deformed, disfigured, ugly, extra limbs, extra fingers, bad anatomy, low quality, "
    "blurry, watermark, text, logo"
)

def _ensure_pil(img):
    return img if isinstance(img, Image.Image) else Image.fromarray(img)

def _resize_512(im: Image.Image):
    w, h = im.size
    scale = 512 / max(w, h)
    if scale < 1.0:
        im = im.resize((int(w*scale), int(h*scale)), Image.LANCZOS)
    return im

# ------------- AGE (single/group) -------------
@torch.inference_mode()
def predict_age(img, group_mode=False, auto_crop=True):
    if img is None:
        return {}, "Please upload an image.", None

    pil = _ensure_pil(img).convert("RGB")

    if group_mode:
        crops, annotated, boxes = cropper.detect_all_wide(pil)
        if not crops:
            # fallback to full image
            age, top = age_est.predict(pil, topk=5)
            probs = {lbl: float(p) for lbl, p in top}
            md = f"**Estimated age (whole image):** {age:.1f} years"
            return probs, md, pil

        # per-face ages
        rows = ["| # | Age (yrs) | Top-1 | p |", "|---:|---:|---|---:|"]
        for i, face in enumerate(crops, 1):
            age, top = age_est.predict(face, topk=3)
            top1, p1 = top[0]
            rows.append(f"| {i} | {age:.1f} | {top1} | {p1:.2f} |")
        md = "\n".join(rows)
        # also return a simple dict from the first face just to feed Label
        age0, top0 = age_est.predict(crops[0], topk=5)
        probs0 = {lbl: float(p) for lbl, p in top0}
        return probs0, md, annotated

    # single
    face_wide = None; annotated = None
    if auto_crop:
        face_wide, annotated = cropper.detect_one_wide(pil)
    target = face_wide if face_wide is not None else pil
    age, top = age_est.predict(target, topk=5)
    probs = {lbl: float(p) for lbl, p in top}
    md = f"**Estimated age:** {age:.1f} years"
    return probs, md, (annotated if annotated is not None else pil)

# ------------- CARTOON (single/group) -------------
@torch.inference_mode()
def cartoonize(img, prompt="", group_mode=False, auto_crop=True, strength=0.5, steps=2, seed=-1):
    if img is None:
        return None
    pil = _ensure_pil(img).convert("RGB")

    user = (prompt or "").strip()
    pos = DEFAULT_POSITIVE if not user else f"{DEFAULT_POSITIVE}, {user}"
    neg = DEFAULT_NEGATIVE

    generator = None
    if isinstance(seed, (int, float)) and int(seed) >= 0:
        generator = torch.Generator(device=age_est.device).manual_seed(int(seed))

    if group_mode:
        # detect all faces, stylize each, assemble grid
        crops, _, _ = cropper.detect_all_wide(pil)
        if not crops:
            crops = [pil]  # fallback

        proc = []
        for c in crops:
            c = _resize_512(c)
            out = sd_pipe(
                prompt=pos, negative_prompt=neg, image=c,
                strength=float(strength), guidance_scale=0.0,
                num_inference_steps=int(steps), generator=generator
            )
            proc.append(out.images[0])

        # tile into a grid
        n = len(proc)
        cols = int(math.ceil(math.sqrt(n)))
        rows = int(math.ceil(n / cols))
        cell_w = max(im.width for im in proc)
        cell_h = max(im.height for im in proc)
        grid = Image.new("RGB", (cols * cell_w, rows * cell_h), (240, 240, 240))
        for i, im in enumerate(proc):
            r, c = divmod(i, cols)
            grid.paste(im, (c * cell_w, r * cell_h))
        return grid

    # single person
    face_wide = None
    if auto_crop:
        face_wide, _ = cropper.detect_one_wide(pil)
    base = face_wide if face_wide is not None else pil
    base = _resize_512(base)
    out = sd_pipe(
        prompt=pos, negative_prompt=neg, image=base,
        strength=float(strength), guidance_scale=0.0,
        num_inference_steps=int(steps), generator=generator
    )
    return out.images[0]

# ------------------ UI ------------------
with gr.Blocks(title="Group Age + Cartoons (Fast)") as demo:
    gr.Markdown("# Predict ages and make fast cartoons β€” single or group photos")
    with gr.Row():
        with gr.Column(scale=1):
            img_in = gr.Image(sources=["upload", "webcam"], type="pil", label="Upload / Webcam")
            group_mode = gr.Checkbox(False, label="Group photo (detect everyone)")
            auto = gr.Checkbox(True, label="Auto face crop (wide)")
            prompt = gr.Textbox(label="(Optional) Extra cartoon style",
                                placeholder="e.g., studio ghibli watercolor, soft bokeh, pastel palette")
            with gr.Row():
                strength = gr.Slider(0.3, 0.8, value=0.5, step=0.05, label="Cartoon strength")
                steps = gr.Slider(1, 4, value=2, step=1, label="Turbo steps (1–4)")
                seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)")
            btn_age = gr.Button("Predict Age(s) (fast)", variant="primary")
            btn_cartoon = gr.Button("Make Cartoon(s) (fast)", variant="secondary")

        with gr.Column(scale=1):
            probs_out = gr.Label(num_top_classes=5, label="Age Prediction (probabilities, first face)")
            age_md = gr.Markdown(label="Age Table / Summary")
            preview = gr.Image(label="Detection Preview (boxes)")
            cartoon_out = gr.Image(label="Cartoon Result (grid for groups)")

    btn_age.click(fn=predict_age, inputs=[img_in, group_mode, auto], outputs=[probs_out, age_md, preview])
    btn_cartoon.click(fn=cartoonize, inputs=[img_in, prompt, group_mode, auto, strength, steps, seed], outputs=cartoon_out)

# Expose for Hugging Face Spaces
app = demo

if __name__ == "__main__":
    app.queue().launch()