Spaces:
Sleeping
title: Tennessee Eastman Process Simulator
emoji: π
colorFrom: blue
colorTo: green
sdk: docker
app_file: app.py
pinned: false
license: bsd-3-clause
Tennessee Eastman Process Simulator
A Python interface to the Tennessee Eastman Process (TEP) simulator with both pure Python and optional Fortran backends.
Based on the original Fortran code by J.J. Downs and E.F. Vogel (1993), with modifications by E.L. Russell, L.H. Chiang, and R.D. Braatz.
Python wrapper developed with Claude Code by John Kitchin.
Features
- Complete TEP simulation with all 50 state variables, 41 measurements, and 12 manipulated variables
- Two backends: Pure Python (default, no compiler needed) or Fortran (~5-10x faster)
- 20 process disturbances (step changes, random variations, slow drift, valve sticking)
- Multiple control modes: Open-loop, closed-loop (decentralized PI), and manual
- Real-time fault detection with pluggable detector modules and performance metrics
- Controller plugin system for custom control strategies
- Batch simulation CLI (
tep-sim) for scripted data generation - Real-time streaming interface for dashboard integration
- Interactive web dashboard (
tep-webpowered by Dash) - Graphical plotting of simulation results (optional matplotlib dependency)
- Reproducible simulations with seeded random number generation
Example Output
Simulation showing IDV(6) - A Feed Loss fault applied at t=1 hour. The A feed flow drops to zero, causing reactor pressure to rise as the controller compensates.
Quick Start
Requirements
- Python 3.8+
- NumPy
Installation
# Default installation (Python backend, no compiler needed)
pip install -e .
# With Fortran acceleration (requires gfortran, ~5-10x faster)
pip install -e . --config-settings=setup-args=-Dfortran=enabled
# With web dashboard support (Dash)
pip install -e ".[web]"
# For development (includes pytest, matplotlib)
pip install -e ".[dev]"
Note: The default installation uses a pure Python backend and requires no compiler. For Fortran acceleration, install gfortran first: On macOS: brew install gcc. On Linux: apt install gfortran.
Basic Usage
from tep import TEPSimulator
# Create and initialize simulator
sim = TEPSimulator()
sim.initialize()
# Run a 1-hour simulation
result = sim.simulate(duration_hours=1.0)
# Access results
print(f"Simulation time: {result.time[-1]:.2f} hours")
print(f"Final reactor temperature: {result.measurements[-1, 8]:.1f} Β°C")
print(f"Final reactor pressure: {result.measurements[-1, 6]:.1f} kPa")
With Disturbances
from tep import TEPSimulator
sim = TEPSimulator()
sim.initialize()
# Apply disturbance IDV(1) at t=0.5 hours
result = sim.simulate(
duration_hours=2.0,
disturbances={1: (0.5, 1)} # {disturbance_id: (time_hours, value)}
)
Launch Web Dashboard
# From command line
tep-web
# With options
tep-web --no-browser --port 8080
# Or from Python
from tep.dashboard_dash import run_dashboard
run_dashboard()
The web dashboard provides:
- Real-time process visualization
- Interactive disturbance controls
- Manual valve manipulation
- Data export to CSV
Live Demo: https://huggingface.co/spaces/jkitchin/tennessee-eastman-process
Note: The HuggingFace demo may occasionally show 429 rate limit errors during high traffic. These typically resolve within 5-10 minutes.
Fault Detection Framework
The simulator includes a comprehensive fault detection framework with:
- Built-in detectors ranging from simple threshold checks to PCA-based multivariate methods
- Plugin system for registering custom detectors via
@register_detectordecorator - Performance metrics (accuracy, F1, detection delay) tracked automatically
- Sliding window management handled by the framework
- Async detection option for computationally intensive methods
Basic Usage
from tep import TEPSimulator, FaultDetectorRegistry
# Create simulator and detector
sim = TEPSimulator()
detector = FaultDetectorRegistry.create("pca", window_size=200)
# Run simulation with fault injection
sim.initialize()
result = sim.simulate(
duration_hours=2.0,
disturbances={4: (1.0, 1)} # Cooling water fault at t=1 hour
)
# Run detection on results
for i, xmeas in enumerate(result.measurements):
detection = detector.process(xmeas, i)
if detection.is_fault:
print(f"Step {i}: Fault detected (class={detection.fault_class}, conf={detection.confidence:.2f})")
Built-in Detectors
| Detector | Description | Key Parameters |
|---|---|---|
threshold |
Fast safety limit checking | limits, fault_mapping |
ewma |
Exponentially weighted moving average | alpha=0.1, threshold=3.0 |
cusum |
Cumulative sum control chart | k=0.5, h=5.0 |
pca |
PCA with TΒ² and SPE statistics | n_components=10, t2_threshold, spe_threshold |
statistical |
Multi-statistic ensemble (mean, variance, trend) | votes_required=2 |
sliding_window |
Window half comparison | threshold=3.0 |
composite |
Combines multiple detectors with voting | min_votes=2 |
Detection Results
Each detector returns a DetectionResult with:
result = detector.process(xmeas, step)
result.fault_class # -1=unknown, 0=normal, 1-20=fault IDV index
result.confidence # 0.0 to 1.0
result.is_fault # True if fault_class > 0
result.is_normal # True if fault_class == 0
result.is_ready # True if detector has enough data
result.contributing_sensors # List of XMEAS indices driving detection
result.statistics # Detector-specific stats (e.g., TΒ², SPE values)
Performance Metrics
Detectors automatically track performance metrics when ground truth is set:
detector.set_ground_truth(fault_class=4, onset_step=3600) # IDV(4) at t=1hr
# After running detection...
metrics = detector.metrics
print(metrics)
# DetectionMetrics (7200 samples, 100 unknown)
# Accuracy: 0.856
# Fault Detection Rate: 0.923
# False Alarm Rate: 0.034
# Missed Detection: 0.077
# Macro F1: 0.812
# Per-class metrics
print(metrics.precision(4)) # Precision for IDV(4)
print(metrics.recall(4)) # Recall for IDV(4)
print(metrics.mean_detection_delay(4)) # Steps to first correct detection
Custom Detector Example
from tep import BaseFaultDetector, DetectionResult, register_detector
import numpy as np
@register_detector(name="pressure_monitor")
class PressureMonitor(BaseFaultDetector):
"""Monitors reactor pressure for cooling water faults."""
name = "pressure_monitor"
window_size = 60 # 60 seconds of history
detect_interval = 10 # Run every 10 steps
def __init__(self, pressure_threshold=2750, **kwargs):
super().__init__(**kwargs)
self.pressure_threshold = pressure_threshold
def detect(self, xmeas, step):
if not self.window_ready:
return DetectionResult(-1, 0.0, step)
# Analyze pressure trend
pressures = self.window[:, 6] # XMEAS(7) = reactor pressure
mean_pressure = np.mean(pressures)
trend = pressures[-1] - pressures[0]
if mean_pressure > self.pressure_threshold and trend > 50:
return DetectionResult(
fault_class=4, # IDV(4) cooling water fault
confidence=min(0.5 + (mean_pressure - self.pressure_threshold) / 200, 0.95),
step=step,
contributing_sensors=[6], # Pressure sensor
statistics={"mean_pressure": mean_pressure, "trend": trend}
)
return DetectionResult(fault_class=0, confidence=0.9, step=step)
def _reset_impl(self):
pass # Reset custom state if needed
# Use your custom detector
detector = FaultDetectorRegistry.create("pressure_monitor", pressure_threshold=2800)
Composite Detector (Ensemble)
Combine multiple detectors with voting:
from tep import FaultDetectorRegistry
# Create individual detectors
threshold = FaultDetectorRegistry.create("threshold")
pca = FaultDetectorRegistry.create("pca", window_size=200)
ewma = FaultDetectorRegistry.create("ewma", alpha=0.1)
# Create composite with majority voting
composite = FaultDetectorRegistry.create("composite", min_votes=2)
composite.add_detector(threshold)
composite.add_detector(pca)
composite.add_detector(ewma)
# Use like any other detector
result = composite.process(xmeas, step)
See examples/fault_detection.py for comprehensive examples including training PCA on normal data and evaluating detection performance.
Batch Simulation CLI
The tep-sim command runs batch simulations with configurable faults, duration, and output format:
# Run 8-hour normal operation simulation
tep-sim --duration 8 --output normal.dat
# Run with fault 1 (A/C Feed Ratio step) starting at 1 hour
tep-sim --duration 8 --faults 1 --fault-times 1.0 --output fault1.dat
# Multiple faults with different start times
tep-sim --duration 8 --faults 1,4,7 --fault-times 1.0,2.0,3.0 --output multi_fault.dat
# Use specific random seed for reproducibility
tep-sim --duration 8 --seed 12345 --output reproducible.dat
# Output in original Fortran multi-file format (15 .dat files)
tep-sim --duration 8 --faults 1 --multi-file --output ./data/
# Display results graphically
tep-sim --duration 2 --faults 1 --plot
# Save plot to file
tep-sim --duration 2 --faults 1 --plot-save results.png
# List all available faults
tep-sim --list-faults
CLI Options:
| Option | Description |
|---|---|
-d, --duration |
Simulation duration in hours (default: 8.0) |
-f, --faults |
Fault IDs to activate (e.g., "1", "1,2,5", "1-5") |
-t, --fault-times |
Fault start times in hours (default: 1.0) |
-s, --seed |
Random seed for reproducibility |
-o, --output |
Output file path (default: tep_data.dat) |
-m, --multi-file |
Output in original Fortran multi-file format |
-r, --record-interval |
Recording interval in seconds (default: 180) |
-p, --plot |
Display results graphically |
--plot-save |
Save plot to file |
-q, --quiet |
Suppress progress output |
--list-faults |
List available faults and exit |
Documentation
- API Reference - Detailed API documentation
- CLI Guide - Batch simulation CLI documentation
- Dashboard Guide - Interactive GUI documentation
- Examples - Usage examples and tutorials
Architecture
tep/
βββ __init__.py # Package exports
βββ simulator.py # High-level TEPSimulator interface (backend-agnostic)
βββ python_backend.py # Pure Python implementation (default)
βββ fortran_backend.py # f2py wrapper for Fortran TEINIT/TEFUNC (optional)
βββ constants.py # Physical constants, initial states, variable names
βββ controllers.py # PI controllers, decentralized control
βββ controller_base.py # Controller plugin system base classes
βββ controller_plugins.py # Built-in controller implementations
βββ detector_base.py # Fault detection system base classes
βββ detector_plugins.py # Built-in detector implementations (PCA, EWMA, etc.)
βββ cli.py # Batch simulation CLI (tep-sim command)
βββ dashboard_dash.py # Web-based Dash dashboard (tep-web command)
βββ _fortran/ # Compiled Fortran extension (optional)
βββ teprob.cpython-*.so
The default Python backend provides a pure Python implementation of the TEP process. The optional Fortran backend uses the original code via f2py for ~5-10x faster simulations.
Process Overview
The Tennessee Eastman Process is a realistic simulation of an industrial chemical process with:
- Reactor: Exothermic reactions AβG, AβH, A+DβF, 3Dβ2F
- Separator: Product separation with cooling water
- Stripper: Steam-heated purification column
- Compressor: Recycle gas compression
State Variables (50 total)
| Range | Description |
|---|---|
| 1-3 | Reactor component moles (A, B, C) |
| 4-9 | Reactor component moles (D, E, F, G, H) + Separator liquid |
| 10-12 | Separator vapor moles |
| 13-17 | Stripper liquid moles |
| 18-30 | Various pressures, levels, temperatures |
| 31-36 | Compressor states |
| 37-50 | Analyzer delay states |
Measurements (41 total)
| Variable | Description | Units |
|---|---|---|
| XMEAS(1-6) | Feed and recycle flows | kscmh, kg/hr |
| XMEAS(7-9) | Reactor pressure, level, temperature | kPa, %, Β°C |
| XMEAS(10-14) | Purge and separator | various |
| XMEAS(15-19) | Stripper measurements | various |
| XMEAS(20-22) | Utilities | kW, Β°C |
| XMEAS(23-28) | Reactor feed composition | mol% |
| XMEAS(29-36) | Purge gas composition | mol% |
| XMEAS(37-41) | Product composition | mol% |
Manipulated Variables (12)
| Variable | Description |
|---|---|
| XMV(1) | D Feed Flow |
| XMV(2) | E Feed Flow |
| XMV(3) | A Feed Flow |
| XMV(4) | A and C Feed Flow |
| XMV(5) | Compressor Recycle Valve |
| XMV(6) | Purge Valve |
| XMV(7) | Separator Liquid Flow |
| XMV(8) | Stripper Product Flow |
| XMV(9) | Stripper Steam Valve |
| XMV(10) | Reactor Cooling Water |
| XMV(11) | Condenser Cooling Water |
| XMV(12) | Agitator Speed |
Disturbances (20)
| IDV | Type | Description |
|---|---|---|
| 1-7 | Step | Feed composition, temperature changes |
| 8-12 | Random | Feed and cooling water variations |
| 13 | Drift | Reaction kinetics slow change |
| 14-15 | Sticking | Cooling water valve issues |
| 16-20 | Unknown | Reserved for testing |
References
Original Fortran Code:
- J.J. Downs and E.F. Vogel, "A plant-wide industrial process control problem," Computers and Chemical Engineering, 17:245-255 (1993). DOI
Modified Closed-Loop Control:
- E.L. Russell, L.H. Chiang, and R.D. Braatz, Data-driven Techniques for Fault Detection and Diagnosis in Chemical Processes, Springer-Verlag, London, 2000.
- L.H. Chiang, E.L. Russell, and R.D. Braatz, Fault Detection and Diagnosis in Industrial Systems, Springer-Verlag, London, 2001.
License
This project is licensed under the BSD-3-Clause License - see the LICENSE file and original copyright notices below.
Original Fortran Documentation
The sections below document the original Fortran implementation.
Contents
This directory contains the Fortran 77 codes for the open-loop and the closed-loop simulations for the Tennessee Eastman process (TEP) as well as the training and testing data files used for evaluating the data-driven methods (PCA, PLS, FDA, and CVA).
| File name | Description |
|---|---|
temain.f |
open loop simulation codes for the TEP |
temain_mod.f |
closed loop simulation codes for the TEP |
teprob.f |
subprogram for the simulation codes for the TEP |
data/ |
Reference data directory with training/testing files (see data/README.md) |
Each training data file contains 480 rows and 52 columns and each testing data file contains 960 rows and 52 columns. An observation vector at a particular time instant is given by
x = [XMEAS(1), XMEAS(2), ..., XMEAS(41), XMV(1), ..., XMV(11)]^T
where XMEAS(n)is the n-th measured variable and XMV(n) is the n-th manipulated variable.
temain.f
Main program for demonstrating application of the Tennessee Eastman Process Control Test Problem.
James J. Downs and Ernest F. Vogel
Process and Control Systems Engineering
Tennessee Eastman Company
P.O. Box 511
Kingsport, TN 37662
Reference
- A Plant-Wide Industrial Process Control Problem, Presented at the AIChE 1990 Annual Meeting Industrial Challenge Problems in Process Control, Paper #24a. Chicago, Illinois, November 14, 1990.
- A Plant-Wide Industrial Process Control Problem, Computers and Chemical Engineering, Vol. 17, No. 3, pp. 245-255 (1993).
temain_mod.f
Main program for demonstrating application of the modified Tennessee Eastman Process Control Test Problem.
This new version is a closed-loop plant-wide control scheme for the Tennessee Eastman Process Control Test Problem. The modifications are by:
Evan L. Russell, Leo H. Chiang and Richard D. Braatz
Large Scale Systems Research Laboratory
Department of Chemical Engineering
University of Illinois at Urbana-Champaign
600 South Mathews Avenue, Box C-3
Urbana, Illinois 61801
Original codes of the Tennessee Eastman Process Control Test Problem written by:
James J. Downs and Ernest F. Vogel
Process and Control Systems Engineering
Tennessee Eastman Company
P.O. Box 511
Kingsport, Tennessee 37662
License
The modified text is Copyright 1998-2002 by The Board of Trustees of the University of Illinois. All rights reserved.
Permission hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal with the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimers.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimers in the documentation and/or other materials provided with the distribution.
- Neither the names of Large Scale Research Systems Laboratory, University of Illinois, nor the names of its contributors may be used to endorse or promote products derived from this Software without specific prior written permission.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Users should cite the original code using the following references:
- J.J. Downs and E.F. Vogel, A plant-wide industrial process control problem. Presented at the AIChE 1990 Annual Meeting, Session on Industrial Challenge Problems in Process Control, Paper #24a Chicago, Illinois, November 14, 1990.
- J.J. Downs and E.F. Vogel, A plant-wide industrial process control problem, Computers and Chemical Engineering, 17:245-255 (1993).
Users should cite the modified code using the following references:
- E.L. Russell, L.H. Chiang, and R.D. Braatz. Data-driven Techniques for Fault Detection and Diagnosis in Chemical Processes, Springer-Verlag, London, 2000.
- L.H. Chiang, E.L. Russell, and R.D. Braatz. Fault Detection and Diagnosis in Industrial Systems, Springer-Verlag, London, 2001.
- L.H. Chiang, E.L. Russell, and R.D. Braatz. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis, Chemometrics and Intelligent Laboratory Systems, 50:243-252, 2000.
- E.L. Russell, L.H. Chiang, and R.D. Braatz. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis, Chemometrics and Intelligent Laboratory Systems, 51:81-93, 2000.
Instructions for running the Fortran program
Go to line
220, changeNPTSto the number of data points to simulate. For each minute of operation, 60 points are generated.Go to line
226, changeSSPTSto the number of data points to simulate in steady state operation before implementing the disturbance.Go to line
367, implement any of the 21 programmed disturbances. For example, to implement disturbance 2, typeIDV(2)=1.The program will generate 15 output files and all data are recorded every 180 seconds, see Table 1 for details.
The default path is the home directory. To change the file name and path, modify lines
346-360accordingly.To overwrite the files that already existed, change
STATUS='new'toSTATUS='old'from lines346-360.Table 1: Content of the output files
# File Name Content 1 TE_data_inc.datTime (in seconds) 2 TE_data_mv1.datMeasurements for manipulated variables 1 to 4 3 TE_data_mv2.datMeasurements for manipulated variables 5 to 8 4 TE_data_mv3.datMeasurements for manipulated variables 9 to 12 5 TE_data_me01.datMeasurements for measurement variables 1 to 4 6 TE_data_me02.datMeasurements for measurement variables 5 to 8 7 TE_data_me03.datMeasurements for measurement variables 9 to 12 8 TE_data_me04.datMeasurements for measurement variables 13 to 16 9 TE_data_me05.datMeasurements for measurement variables 17 to 20 10 TE_data_me06.datMeasurements for measurement variables 21 to 24 11 TE_data_me07.datMeasurements for measurement variables 25 to 28 12 TE_data_me08.datMeasurements for measurement variables 29 to 32 13 TE_data_me09.datMeasurements for measurement variables 33 to 36 14 TE_data_me10.datMeasurements for measurement variables 37 to 40 15 TE_data_me11.datMeasurements for measurement variable 41 To ensure the randomness of the measurement noises, the random number
Gin the sub program (teprob.f, line 1187) has to be changed each time before runningtemain_mod.f.Save the changes in
temain_mod.fandteprob.fand compile the program in unix by typingf77 temain_mod.f teprob.fRun the program by typing
a.out
teprob.f
Revised 4-4-91 to correct error in documentation of manipulated variables
Tennessee Eastman Process Control Test Problem
James J. Downs and Ernest F. Vogel
Process and Control Systems Engineering
Tennessee Eastman Company
P.O. Box 511
Kingsport, TN 37662
Reference
- A Plant-Wide Industrial Process Control Problem". Presented at the AIChE 1990 Annual Meeting Industrial Challenge Problems in Process Control, Paper #24a Chicago, Illinois, November 14, 1990.
Subroutines
TEFUNC- Function evaluator to be called by integratorTEINIT- InitializationTESUBi- Utility subroutines (i = 1, 2, ..., 8)
The process simulation has 50 states (NN=50).
If the user wishes to integrate additional states, NN must be increased accordingly in the calling program.
The additional states should be appended to the end of the YY vector, e.g. YY(51), .... The additional derivatives should be appended to the end of the YP vector, e.g. YP(51),....
To initialize the new states and to calculate derivatives for them, we suggest creating new function evaluator and initialization routines as follows.
C-----------------------------------------------
C
SUBROUTINE FUNC(NN,TIME,YY,YP)
C
INTEGER NN
DOUBLE PRECISION TIME, YY(NN), YP(NN)
C
C Call the function evaluator for the process
C
CALL TEFUNC(NN,TIME,YY,YP)
C
C Calculate derivatives for additional states
C
YP(51) = ....
YP(52) = ....
.
.
.
YP(NN) = ....
C
RETURN
END
C
C-----------------------------------------------
C
SUBROUTINE INIT(NN,TIME,YY,YP)
C
INTEGER NN
DOUBLE PRECISION TIME, YY(NN), YP(NN)
C
C Call the initialization for the process
C
CALL TEINIT(NN,TIME,YY,YP)
C
C Initialize additional states
C
YY(51) = ....
YY(52) = ....
.
.
.
YY(NN) = ....
C
RETURN
END
C
C-----------------------------------------------
Differences between the code and its description in the paper:
- Subroutine
TEINIThasTIMEin the argument list.TEINITsetsTIMEto zero. - There are 8 utility subroutines (
TESUBi) rather than 5. - Process disturbances 14 through 20 do NOT need to be used in conjunction with another disturbance as stated in the paper. All disturbances can be used alone or in any combination.
Manipulated Variables (Fortran)
| Variable | Description |
|---|---|
XMV(1) |
D Feed Flow (stream 2) (Corrected Order) |
XMV(2) |
E Feed Flow (stream 3) (Corrected Order) |
XMV(3) |
A Feed Flow (stream 1) (Corrected Order) |
XMV(4) |
A and C Feed Flow (stream 4) |
XMV(5) |
Compressor Recycle Valve |
XMV(6) |
Purge Valve (stream 9) |
XMV(7) |
Separator Pot Liquid Flow (stream 10) |
XMV(8) |
Stripper Liquid Product Flow (stream 11) |
XMV(9) |
Stripper Steam Valve |
XMV(10) |
Reactor Cooling Water Flow |
XMV(11) |
Condenser Cooling Water Flow |
XMV(12) |
Agitator Speed |
Continuous Process Measurements (Fortran)
| Variable | Description | unit |
|---|---|---|
XMEAS(1) |
A Feed (stream 1) | kscmh |
XMEAS(2) |
D Feed (stream 2) | kg/hr |
XMEAS(3) |
E Feed (stream 3) | kg/hr |
XMEAS(4) |
A and C Feed (stream 4) | kscmh |
XMEAS(5) |
Recycle Flow (stream 8) | kscmh |
XMEAS(6) |
Reactor Feed Rate (stream 6) | kscmh |
XMEAS(7) |
Reactor Pressure | kPa gauge |
XMEAS(8) |
Reactor Level | % |
XMEAS(9) |
Reactor Temperature | Deg C |
XMEAS(10) |
Purge Rate (stream 9) | kscmh |
XMEAS(11) |
Product Sep Temp | Deg C |
XMEAS(12) |
Product Sep Level | % |
XMEAS(13) |
Prod Sep Pressure | kPa gauge |
XMEAS(14) |
Prod Sep Underflow (stream 10) | m3/hr |
XMEAS(15) |
Stripper Level | % |
XMEAS(16) |
Stripper Pressure | kPa gauge |
XMEAS(17) |
Stripper Underflow (stream 11) | m3/hr |
XMEAS(18) |
Stripper Temperature | Deg C |
XMEAS(19) |
Stripper Steam Flow | kg/hr |
XMEAS(20) |
Compressor Work | kW |
XMEAS(21) |
Reactor Cooling Water Outlet Temp | Deg C |
XMEAS(22) |
Separator Cooling Water Outlet Temp | Deg C |
Sampled Process Measurements (Fortran)
Reactor Feed Analysis (Stream 6)
- Sampling Frequency = 0.1 hr
- Dead Time = 0.1 hr
- Mole %
Variable Description XMEAS(23)Component A XMEAS(24)Component B XMEAS(25)Component C XMEAS(26)Component D XMEAS(27)Component E XMEAS(28)Component F Purge Gas Analysis (Stream 9)
- Sampling Frequency = 0.1 hr
- Dead Time = 0.1 hr
- Mole %
Variable Description XMEAS(29)Component A XMEAS(30)Component B XMEAS(31)Component C XMEAS(32)Component D XMEAS(33)Component E XMEAS(34)Component F XMEAS(35)Component G XMEAS(36)Component H Product Analysis (Stream 11)
- Sampling Frequency = 0.25 hr
- Dead Time = 0.25 hr
- Mole %
Variable Description XMEAS(37)Component D XMEAS(38)Component E XMEAS(39)Component F XMEAS(40)Component G XMEAS(41)Component H
Process Disturbances (Fortran)
| Variable | Description |
|---|---|
IDV(1) |
A/C Feed Ratio, B Composition Constant (Stream 4) Step |
IDV(2) |
B Composition, A/C Ratio Constant (Stream 4) Step |
IDV(3) |
D Feed Temperature (Stream 2) Step |
IDV(4) |
Reactor Cooling Water Inlet Temperature Step |
IDV(5) |
Condenser Cooling Water Inlet Temperature Step |
IDV(6) |
A Feed Loss (Stream 1) Step |
IDV(7) |
C Header Pressure Loss - Reduced Availability (Stream 4) Step |
IDV(8) |
A, B, C Feed Composition (Stream 4) Random Variation |
IDV(9) |
D Feed Temperature (Stream 2) Random Variation |
IDV(10) |
C Feed Temperature (Stream 4) Random Variation |
IDV(11) |
Reactor Cooling Water Inlet Temperature Random Variation |
IDV(12) |
Condenser Cooling Water Inlet Temperature Random Variation |
IDV(13) |
Reaction Kinetics Slow Drift |
IDV(14) |
Reactor Cooling Water Valve Sticking |
IDV(15) |
Condenser Cooling Water Valve Sticking |
IDV(16) |
Unknown |
IDV(17) |
Unknown |
IDV(18) |
Unknown |
IDV(19) |
Unknown |
IDV(20) |
Unknown |
