Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python3 | |
| """ | |
| MCP Video Analysis Client with Llama 3 Integration | |
| This application serves as an MCP (Model Context Protocol) client that: | |
| 1. Connects to video analysis tools via MCP | |
| 2. Integrates with a Llama 3 model hosted on Modal for intelligent video understanding | |
| 3. Provides a Gradio interface for user interaction | |
| """ | |
| import os | |
| import json | |
| import logging | |
| from typing import Dict, Any, Optional | |
| import gradio as gr | |
| import httpx | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| class MCPVideoAnalysisClient: | |
| """MCP Client for video analysis with Llama 3 integration.""" | |
| def __init__(self): | |
| # Modal backend for video processing | |
| self.video_analysis_endpoint = os.getenv( | |
| "MODAL_VIDEO_ANALYSIS_ENDPOINT_URL", | |
| "https://jomasego--video-analysis-gradio-pipeline-process-video-analysis.modal.run" | |
| ) | |
| # Modal backend for Llama 3 insights | |
| self.llama_endpoint = os.getenv( | |
| "MODAL_LLAMA3_ENDPOINT_URL" | |
| # This will be set to the deployed Llama 3 app URL. | |
| # e.g., "https://jomasego--llama3-inference-service-summarize.modal.run" | |
| ) | |
| logger.info(f"Initialized MCP Client.") | |
| logger.info(f"Video Analysis Endpoint: {self.video_analysis_endpoint}") | |
| if not self.llama_endpoint: | |
| logger.warning("MODAL_LLAMA3_ENDPOINT_URL not set. LLM insights will be unavailable.") | |
| else: | |
| logger.info(f"Llama 3 Endpoint: {self.llama_endpoint}") | |
| async def analyze_video_with_modal(self, video_url: str) -> Dict[str, Any]: | |
| """Call the Modal backend for comprehensive video analysis.""" | |
| try: | |
| async with httpx.AsyncClient(timeout=300.0) as client: | |
| logger.info(f"Calling video analysis backend: {video_url}") | |
| response = await client.post( | |
| self.video_analysis_endpoint, | |
| json={"video_url": video_url}, | |
| headers={"Content-Type": "application/json"} | |
| ) | |
| response.raise_for_status() | |
| return response.json() | |
| except Exception as e: | |
| logger.error(f"Error calling video analysis backend: {e}") | |
| return {"error": f"Video analysis backend error: {str(e)}"} | |
| async def get_insights_from_llama3(self, analysis_data: Dict[str, Any], user_query: Optional[str] = None) -> str: | |
| """Call the Llama 3 Modal backend for intelligent insights.""" | |
| if not self.llama_endpoint: | |
| return "Llama 3 endpoint is not configured. Cannot generate insights." | |
| try: | |
| payload = { | |
| "analysis_data": analysis_data, | |
| "user_query": user_query | |
| } | |
| async with httpx.AsyncClient(timeout=300.0) as client: | |
| logger.info(f"Calling Llama 3 Modal backend for insights.") | |
| response = await client.post( | |
| self.llama_endpoint, | |
| json=payload, | |
| headers={"Content-Type": "application/json"} | |
| ) | |
| response.raise_for_status() | |
| result = response.json() | |
| return result.get("summary", "No summary returned from Llama 3 service.") | |
| except Exception as e: | |
| logger.error(f"Error calling Llama 3 backend: {e}") | |
| return f"Error generating Llama 3 insights: {str(e)}" | |
| async def process_video_request(self, video_url: str, user_query: str = None) -> tuple[str, str]: | |
| """Process a complete video analysis request with Llama 3 enhancement.""" | |
| if not video_url or not video_url.strip(): | |
| return "Please provide a valid video URL.", "" | |
| try: | |
| # Step 1: Get video analysis from Modal backend | |
| logger.info(f"Starting video analysis for: {video_url}") | |
| video_analysis = await self.analyze_video_with_modal(video_url.strip()) | |
| # Step 2: Format the raw analysis for display | |
| raw_analysis = json.dumps(video_analysis, indent=2) | |
| # Step 3: Enhance with Llama 3 insights | |
| logger.info("Generating Llama 3 insights...") | |
| llama_insights = await self.get_insights_from_llama3(video_analysis, user_query) | |
| return llama_insights, raw_analysis | |
| except Exception as e: | |
| error_msg = f"Error processing video request: {str(e)}" | |
| logger.error(error_msg) | |
| return error_msg, "" | |
| # Initialize the MCP client | |
| try: | |
| mcp_client = MCPVideoAnalysisClient() | |
| logger.info("MCP Video Analysis Client initialized successfully") | |
| except Exception as e: | |
| logger.error(f"Failed to initialize MCP client: {e}") | |
| mcp_client = None | |
| # Gradio Interface Functions | |
| async def analyze_video_interface(video_url: str, user_query: str = None) -> tuple[str, str]: | |
| """Gradio interface function for video analysis.""" | |
| if not mcp_client: | |
| return "MCP Client not initialized. Please check your environment variables.", "" | |
| return await mcp_client.process_video_request(video_url, user_query) | |
| def create_gradio_interface(): | |
| """Create and configure the Gradio interface.""" | |
| with gr.Blocks( | |
| title="MCP Video Analysis with Llama 3", | |
| theme=gr.themes.Soft(), | |
| css=""" | |
| .gradio-container { | |
| max-width: 1200px !important; | |
| } | |
| .main-header { | |
| text-align: center; | |
| margin-bottom: 30px; | |
| } | |
| .analysis-output { | |
| max-height: 600px; | |
| overflow-y: auto; | |
| } | |
| """ | |
| ) as interface: | |
| gr.HTML(""" | |
| <div class="main-header"> | |
| <h1>π₯ MCP Video Analysis with Llama 3 AI</h1> | |
| <p>Intelligent video content analysis powered by a Modal backend and Llama 3</p> | |
| </div> | |
| """) | |
| with gr.Tab("π Video Analysis"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| video_url_input = gr.Textbox( | |
| label="Video URL", | |
| placeholder="Enter YouTube URL or direct video link...", | |
| lines=2 | |
| ) | |
| user_query_input = gr.Textbox( | |
| label="Specific Question (Optional)", | |
| placeholder="Ask a specific question about the video...", | |
| lines=2 | |
| ) | |
| with gr.Row(): | |
| analyze_btn = gr.Button("π Analyze Video", variant="primary", size="lg") | |
| clear_btn = gr.Button("ποΈ Clear", variant="secondary") | |
| with gr.Column(scale=2): | |
| llama_output = gr.Textbox( | |
| label="π€ Llama 3 AI Insights", | |
| lines=20, | |
| elem_classes=["analysis-output"], | |
| interactive=False | |
| ) | |
| with gr.Row(): | |
| raw_analysis_output = gr.JSON( | |
| label="π Raw Analysis Data", | |
| elem_classes=["analysis-output"] | |
| ) | |
| # Example videos | |
| gr.HTML("<h3>π Example Videos to Try:</h3>") | |
| with gr.Row(): | |
| example_urls = [ | |
| "https://www.youtube.com/watch?v=dQw4w9WgXcQ", | |
| "https://www.youtube.com/watch?v=jNQXAC9IVRw", | |
| "https://www.youtube.com/watch?v=9bZkp7q19f0" | |
| ] | |
| for i, url in enumerate(example_urls, 1): | |
| gr.Button(f"Example {i}", size="sm").click( | |
| lambda url=url: url, outputs=video_url_input | |
| ) | |
| with gr.Tab("βΉοΈ About"): | |
| gr.Markdown(""" | |
| ## About MCP Video Analysis | |
| This application combines multiple AI technologies to provide comprehensive video analysis: | |
| ### π§ Technology Stack | |
| - **Modal Backend**: Scalable cloud compute for video processing and LLM inference | |
| - **Whisper**: Speech-to-text transcription | |
| - **Computer Vision Models**: Object detection, action recognition, and captioning | |
| - **Meta Llama 3**: Advanced AI for intelligent content analysis | |
| - **MCP Protocol**: Model Context Protocol for seamless integration | |
| ### π― Features | |
| - **Transcription**: Extract spoken content from videos | |
| - **Visual Analysis**: Identify objects, actions, and scenes | |
| - **Content Understanding**: AI-powered insights and summaries | |
| - **Custom Queries**: Ask specific questions about video content | |
| ### π Usage | |
| 1. Enter a video URL (YouTube or direct link) | |
| 2. Optionally ask a specific question | |
| 3. Click "Analyze Video" to get comprehensive insights | |
| 4. Review both Llama 3's intelligent analysis and raw data | |
| ### π Privacy & Security | |
| - Video processing is handled securely in the cloud | |
| - No video data is stored permanently | |
| - API keys are handled securely via environment variables | |
| """) | |
| # Event handlers | |
| def clear_all(): | |
| return "", "", "", "" | |
| analyze_btn.click( | |
| fn=analyze_video_interface, | |
| inputs=[video_url_input, user_query_input], | |
| outputs=[llama_output, raw_analysis_output], | |
| show_progress=True | |
| ) | |
| clear_btn.click( | |
| fn=clear_all, | |
| outputs=[video_url_input, user_query_input, llama_output, raw_analysis_output] | |
| ) | |
| return interface | |
| # Create and launch the interface | |
| if __name__ == "__main__": | |
| interface = create_gradio_interface() | |
| interface.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=False, | |
| show_error=True | |
| ) | |