Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from minicons import cwe | |
| import pandas as pd | |
| import numpy as np | |
| from model import FeatureNormPredictor | |
| def predict (word, sentence, lm_name, layer, norm): | |
| if word not in sentence: return "invalid input: word not in sentence" | |
| model_name = lm_name + str(layer) + '_to_' + norm | |
| lm = cwe.CWE('bert-base-uncased') | |
| if layer not in range (lm.layers): return "invalid input: layer not in lm" | |
| model = FeatureNormPredictor.load_from_checkpoint( | |
| checkpoint_path=model_name+'.ckpt', | |
| map_location=None | |
| ) | |
| model.eval() | |
| inputs = [word, sentence, lm_name, str(layer), norm] | |
| outputs = [input+'\t'+str(np.random.randint(0,100, size=1)[0]) for input in inputs] | |
| return "\n".join(outputs) | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| "text", | |
| "text", | |
| gr.Radio(["bert", "roberta", "electra"]), | |
| "number", | |
| gr.Radio(["Binder", "McRae", "Buchanan"]), | |
| ], | |
| outputs=["text"], | |
| ) | |
| demo.launch() |