multimodalart's picture
Update app.py
b623bee verified
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile
from typing import Optional, Tuple, Any
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'
),
torch_dtype=dtype
).to(device)
pipe.load_lora_weights(
"dx8152/Qwen-Edit-2509-Multiple-angles",
weight_name="镜头转换.safetensors",
adapter_name="angles"
)
pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(
pipe,
image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))],
prompt="prompt"
)
MAX_SEED = np.iinfo(np.int32).max
def _generate_video_segment(
input_image_path: str,
output_image_path: str,
prompt: str,
request: gr.Request
) -> str:
"""
Generate a single video segment between two frames by calling an external
Wan 2.2 image-to-video service hosted on Hugging Face Spaces.
This helper function is used internally when the user asks to create
a video between the input and output images.
Args:
input_image_path (str):
Path to the starting frame image on disk.
output_image_path (str):
Path to the ending frame image on disk.
prompt (str):
Text prompt describing the camera movement / transition.
request (gr.Request):
Gradio request object, used here to forward the `x-ip-token`
header to the downstream Space for authentication/rate limiting.
Returns:
str:
A string returned by the external service, usually a URL or path
to the generated video.
"""
x_ip_token = request.headers['x-ip-token']
video_client = Client(
"multimodalart/wan-2-2-first-last-frame",
headers={"x-ip-token": x_ip_token}
)
result = video_client.predict(
start_image_pil=handle_file(input_image_path),
end_image_pil=handle_file(output_image_path),
prompt=prompt,
api_name="/generate_video",
)
return result[0]["video"]
def build_camera_prompt(
rotate_deg: float = 0.0,
move_forward: float = 0.0,
vertical_tilt: float = 0.0,
wideangle: bool = False
) -> str:
"""
Build a camera movement prompt based on the chosen controls.
This converts the provided control values into a prompt instruction with the corresponding trigger words for the multiple-angles LoRA.
Args:
rotate_deg (float, optional):
Horizontal rotation in degrees. Positive values rotate left,
negative values rotate right. Defaults to 0.0.
move_forward (float, optional):
Forward movement / zoom factor. Larger values imply moving the
camera closer or into a close-up. Defaults to 0.0.
vertical_tilt (float, optional):
Vertical angle of the camera:
- Negative ≈ bird's-eye view
- Positive ≈ worm's-eye view
Defaults to 0.0.
wideangle (bool, optional):
Whether to switch to a wide-angle lens style. Defaults to False.
Returns:
str:
A text prompt describing the camera motion. If no controls are
active, returns `"no camera movement"`.
"""
prompt_parts = []
# Rotation
if rotate_deg != 0:
direction = "left" if rotate_deg > 0 else "right"
if direction == "left":
prompt_parts.append(
f"将镜头向左旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the left."
)
else:
prompt_parts.append(
f"将镜头向右旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the right."
)
# Move forward / close-up
if move_forward > 5:
prompt_parts.append("将镜头转为特写镜头 Turn the camera to a close-up.")
elif move_forward >= 1:
prompt_parts.append("将镜头向前移动 Move the camera forward.")
# Vertical tilt
if vertical_tilt <= -1:
prompt_parts.append("将相机转向鸟瞰视角 Turn the camera to a bird's-eye view.")
elif vertical_tilt >= 1:
prompt_parts.append("将相机切换到仰视视角 Turn the camera to a worm's-eye view.")
# Lens option
if wideangle:
prompt_parts.append(" 将镜头转为广角镜头 Turn the camera to a wide-angle lens.")
final_prompt = " ".join(prompt_parts).strip()
return final_prompt if final_prompt else "no camera movement"
@spaces.GPU
def infer_camera_edit(
image: Optional[Image.Image] = None,
rotate_deg: float = 0.0,
move_forward: float = 0.0,
vertical_tilt: float = 0.0,
wideangle: bool = False,
seed: int = 0,
randomize_seed: bool = True,
true_guidance_scale: float = 1.0,
num_inference_steps: int = 4,
height: Optional[int] = None,
width: Optional[int] = None,
prev_output: Optional[Image.Image] = None,
) -> Tuple[Image.Image, int, str]:
"""
Edit the camera angles/view of an image with Qwen Image Edit 2509 and dx8152's Qwen-Edit-2509-Multiple-angles LoRA.
Applies a camera-style transformation (rotation, zoom, tilt, lens)
to an input image.
Args:
image (PIL.Image.Image | None, optional):
Input image to edit. If `None`, the function will instead try to
use `prev_output`. At least one of `image` or `prev_output` must
be available. Defaults to None.
rotate_deg (float, optional):
Horizontal rotation in degrees (-90, -45, 0, 45, 90). Positive values rotate
to the left, negative to the right. Defaults to 0.0.
move_forward (float, optional):
Forward movement / zoom factor (0, 5, 10). Higher values move the
camera closer; values >5 switch to a close-up style. Defaults to 0.0.
vertical_tilt (float, optional):
Vertical tilt (-1 to 1). -1 ≈ bird's-eye view, +1 ≈ worm's-eye view.
Defaults to 0.0.
wideangle (bool, optional):
Whether to use a wide-angle lens style. Defaults to False.
seed (int, optional):
Random seed for the generation. Ignored if `randomize_seed=True`.
Defaults to 0.
randomize_seed (bool, optional):
If True, a random seed (0..MAX_SEED) is chosen per call.
Defaults to True.
true_guidance_scale (float, optional):
CFG / guidance scale controlling prompt adherence.
Defaults to 1.0 since the demo is using a distilled transformer for faster inference.
num_inference_steps (int, optional):
Number of inference steps. Defaults to 4.
height (int, optional):
Output image height. Must typically be a multiple of 8.
If set to 0, the model will infer a size. Defaults to 1024 if none is provided.
width (int, optional):
Output image width. Must typically be a multiple of 8.
If set to 0, the model will infer a size. Defaults to 1024 if none is provided.
prev_output (PIL.Image.Image | None, optional):
Previous output image to use as input when no new image is uploaded.
Defaults to None.
Returns:
Tuple[PIL.Image.Image, int, str]:
- The edited output image.
- The actual seed used for generation.
- The constructed camera prompt string.
"""
progress = gr.Progress(track_tqdm=True)
prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle)
print(f"Generated Prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Choose input image (prefer uploaded, else last output)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
elif prev_output:
pil_images.append(prev_output.convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("Please upload an image first.")
if prompt == "no camera movement":
return image, seed, prompt
result = pipe(
image=pil_images,
prompt=prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed, prompt
def create_video_between_images(
input_image: Optional[Image.Image],
output_image: Optional[np.ndarray],
prompt: str,
request: gr.Request
) -> str:
"""
Create a short transition video between the input and output images via the
Wan 2.2 first-last-frame Space.
Args:
input_image (PIL.Image.Image | None):
Starting frame image (the original / previous view).
output_image (numpy.ndarray | None):
Ending frame image - the output image with the the edited camera angles.
prompt (str):
The camera movement prompt used to describe the transition.
request (gr.Request):
Gradio request object, used to forward the `x-ip-token` header
to the video generation app.
Returns:
str:
a path pointing to the generated video.
Raises:
gr.Error:
If either image is missing or if the video generation fails.
"""
if input_image is None or output_image is None:
raise gr.Error("Both input and output images are required to create a video.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
input_image.save(tmp.name)
input_image_path = tmp.name
output_pil = Image.fromarray(output_image.astype('uint8'))
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
output_pil.save(tmp.name)
output_image_path = tmp.name
video_path = _generate_video_segment(
input_image_path,
output_image_path,
prompt if prompt else "Camera movement transformation",
request
)
return video_path
except Exception as e:
raise gr.Error(f"Video generation failed: {e}")
# --- UI ---
css = '''#col-container { max-width: 800px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 800px; margin: 0 auto; }'''
def reset_all() -> list:
"""
Reset all camera control knobs and flags to their default values.
This is used by the "Reset" button to set:
- rotate_deg = 0
- move_forward = 0
- vertical_tilt = 0
- wideangle = False
- is_reset = True
Returns:
list:
A list of values matching the order of the reset outputs:
[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset, True]
"""
return [0, 0, 0, 0, False, True]
def end_reset() -> bool:
"""
Mark the end of a reset cycle.
This helper is chained after `reset_all` to set the internal
`is_reset` flag back to False, so that live inference can resume.
Returns:
bool:
Always returns False.
"""
return False
def update_dimensions_on_upload(
image: Optional[Image.Image]
) -> Tuple[int, int]:
"""
Compute recommended (width, height) for the output resolution when an
image is uploaded while preserveing the aspect ratio.
Args:
image (PIL.Image.Image | None):
The uploaded image. If `None`, defaults to (1024, 1024).
Returns:
Tuple[int, int]:
The new (width, height).
"""
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control")
gr.Markdown("""
Qwen Image Edit 2509 for Camera Control ✨
Using [dx8152's Qwen-Edit-2509-Multiple-angles LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Multiple-angles) and [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) for 4-step inference 💨
"""
)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input Image", type="pil")
prev_output = gr.Image(value=None, visible=False)
is_reset = gr.Checkbox(value=False, visible=False)
with gr.Tab("Camera Controls"):
rotate_deg = gr.Slider(
label="Rotate Right-Left (degrees °)",
minimum=-90,
maximum=90,
step=45,
value=0
)
move_forward = gr.Slider(
label="Move Forward → Close-Up",
minimum=0,
maximum=10,
step=5,
value=0
)
vertical_tilt = gr.Slider(
label="Vertical Angle (Bird ↔ Worm)",
minimum=-1,
maximum=1,
step=1,
value=0
)
wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False)
with gr.Row():
reset_btn = gr.Button("Reset")
run_btn = gr.Button("Generate", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True
)
true_guidance_scale = gr.Slider(
label="True Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=40,
step=1,
value=4
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=8,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=8,
value=1024
)
with gr.Column():
result = gr.Image(label="Output Image", interactive=False)
prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False)
create_video_button = gr.Button(
"🎥 Create Video Between Images",
variant="secondary",
visible=False
)
with gr.Group(visible=False) as video_group:
video_output = gr.Video(
label="Generated Video",
buttons=["download"],
autoplay=True
)
inputs = [
image, rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
]
outputs = [result, seed, prompt_preview]
# Reset behavior
reset_btn.click(
fn=reset_all,
inputs=None,
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
queue=False
).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)
# Manual generation with video button visibility control
def infer_and_show_video_button(*args: Any):
"""
Wrapper around `infer_camera_edit` that also controls the visibility
of the 'Create Video Between Images' button.
The first argument in `args` is expected to be the input image; if both
input and output images are present, the video button is shown.
Args:
*args:
Positional arguments forwarded directly to `infer_camera_edit`.
Returns:
tuple:
(output_image, seed, prompt, video_button_visibility_update)
"""
result_img, result_seed, result_prompt = infer_camera_edit(*args)
# Show video button if we have both input and output images
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
run_event = run_btn.click(
fn=infer_and_show_video_button,
inputs=inputs,
outputs=outputs + [create_video_button]
)
# Video creation
create_video_button.click(
fn=lambda: gr.update(visible=True),
outputs=[video_group],
api_visibility="private"
).then(
fn=create_video_between_images,
inputs=[image, result, prompt_preview],
outputs=[video_output],
api_visibility="private"
)
# Examples
gr.Examples(
examples=[
["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024],
["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024],
["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024],
["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024],
["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024]
],
inputs=[
image, rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width
],
outputs=outputs,
fn=infer_camera_edit,
cache_examples=True,
cache_mode="lazy",
elem_id="examples"
)
# Image upload triggers dimension update and control reset
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height]
).then(
fn=reset_all,
inputs=None,
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
queue=False
).then(
fn=end_reset,
inputs=None,
outputs=[is_reset],
queue=False
)
# Live updates
def maybe_infer(
is_reset: bool,
progress: gr.Progress = gr.Progress(track_tqdm=True),
*args: Any
):
if is_reset:
return gr.update(), gr.update(), gr.update(), gr.update()
else:
result_img, result_seed, result_prompt = infer_camera_edit(*args)
# Show video button if we have both input and output
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
control_inputs = [
image, rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
]
control_inputs_with_flag = [is_reset] + control_inputs
for control in [rotate_deg, move_forward, vertical_tilt]:
control.release(
fn=maybe_infer,
inputs=control_inputs_with_flag,
outputs=outputs + [create_video_button]
)
wideangle.input(
fn=maybe_infer,
inputs=control_inputs_with_flag,
outputs=outputs + [create_video_button]
)
run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
gr.api(infer_camera_edit, api_name="infer_edit_camera_angles")
gr.api(create_video_between_images, api_name="create_video_between_images")
demo.launch(mcp_server=True, theme=gr.themes.Citrus(), css=css, footer_links=["api", "gradio", "settings"])