File size: 11,793 Bytes
cf7e82a f1df503 c4a74cb b3b2e6b cf7e82a c050e6e cf7e82a c050e6e cf7e82a c050e6e cf7e82a c050e6e cf7e82a c050e6e cf7e82a c050e6e 7776235 4b73981 245fe03 c050e6e 7776235 c050e6e 7776235 c050e6e cf7e82a 7776235 cf7e82a 200e56a c4a74cb 7776235 c91973c 200e56a 7776235 c91973c c4a74cb cf7e82a 584c000 cf7e82a 245fe03 7776235 245fe03 cf7e82a c050e6e 7776235 f1df503 cf7e82a eec2308 c050e6e 7776235 eec2308 7776235 cf7e82a eec2308 c050e6e cf7e82a eec2308 c050e6e cf7e82a c050e6e cf7e82a f1df503 c050e6e cf7e82a 7776235 cf7e82a 7776235 245fe03 7776235 200e56a 245fe03 7776235 200e56a c050e6e 7776235 c050e6e eec2308 c050e6e eec2308 c050e6e eec2308 c050e6e 7776235 c050e6e 89c9ca7 c4a74cb 7776235 c4a74cb c050e6e cf7e82a 7776235 245fe03 7776235 89c9ca7 c050e6e 7776235 245fe03 7776235 c050e6e 7776235 c050e6e 7776235 c050e6e 7776235 c050e6e 7776235 f1df503 cf7e82a c4a74cb f1df503 cf7e82a f1df503 cf7e82a 584c000 cf7e82a 7776235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os
import json
import gradio as gr
import pandas as pd
from about_content import about_markdown # Import the about page content
from submission_content import submission_markdown # Import the submission page content
import plotly.express as px
import plotly
# Helper function to load data from JSON files
def load_data(data_dir):
data = []
for file_name in os.listdir(data_dir):
if file_name.endswith(".json"):
# Extract stage, method, model, and dataset from the file name
stage, method, model, dataset = file_name.replace(".json", "").split("_")
with open(os.path.join(data_dir, file_name), "r") as f:
entry = json.load(f)
entry.update({"Method": method, "Model": model, "Dataset": dataset, "Stage": stage})
data.append(entry)
return pd.DataFrame(data)
def filter_and_display(selected_columns, model_types, datasets, stage):
filtered = data.copy()
# Filter by stage
filtered = filtered[filtered["Stage"] == stage]
# Filter by model types
if model_types:
filtered = filtered[filtered["Model"].isin(model_types)]
# Filter by datasets
if datasets:
filtered = filtered[filtered["Dataset"].isin(datasets)]
if not filtered.empty:
# Adjust aggregation based on stage
if stage == "decode":
filtered = filtered.groupby(["Method", "Model", "Dataset"], as_index=False).agg({
"Throughput (token/s)": "mean",
"Quality": "mean",
"Link": "first"
})
else:
filtered = filtered.groupby(["Method", "Model", "Dataset"], as_index=False).agg({
"Quality": "mean",
"TTFT (s)": "mean",
"Link": "first"
})
# Select columns to display
display_columns = ["Method", "Model", "Dataset"] + [col for col in selected_columns if col in filtered.columns]
return filtered[display_columns] if not filtered.empty else pd.DataFrame(columns=display_columns)
def create_prefill_visualization(filtered_data):
if filtered_data.empty:
return None
fig = px.scatter(
filtered_data,
x='TTFT (s)',
y='Quality',
color='Method',
hover_data=['Model', 'Dataset'],
title='Prefill Stage: Quality vs TTFT (s) by Method'
)
fig.update_layout(
yaxis=dict(range=[0, 100]), # Set y-axis (Quality) range from 0 to 1
xaxis=dict(range=[0, None]) # Set x-axis (TTFT (s)) to start from 0
)
return fig
def create_decode_visualization(filtered_data):
if filtered_data.empty:
return None
fig = px.scatter(
filtered_data,
x='Throughput (token/s)',
y='Quality',
color='Method',
hover_data=['Model', 'Dataset'],
title='Decode Stage: Quality vs Throughput by Method'
)
fig.update_layout(
yaxis=dict(range=[0, 100]), # Set y-axis (Quality) range from 0 to 1
xaxis=dict(range=[0, None]) # Set x-axis (Throughput (token/s)) to start from 0
)
return fig
# Load the data from the /data folder
data_dir = "data"
data = load_data(data_dir)
# Gradio app UI and functionality
def create_gradio_app():
with gr.Blocks() as app:
with gr.Row():
gr.Markdown(
"""# KV Cache Benchmark
### Demo leaderboard
This demo leaderboard allows users to explore and compare different KV cache implementations across various models and datasets. It provides interactive filtering options and real-time updates of benchmark results, including visualization of Quality and TTFT (s) metrics.
""")
with gr.Tabs():
with gr.TabItem("KV Cache Benchmark"):
# Prefill-stage selection
with gr.Row():
gr.Markdown("## Prefill-Stage KV Cache Compression")
with gr.Row():
with gr.Column():
gr.Markdown("#### Select Columns to Display")
prefill_columns_to_display = gr.CheckboxGroup(
choices=["Quality", "TTFT (s)", "Link"],
label="Columns",
value=["Quality", "TTFT (s)"]
)
with gr.Column():
gr.Markdown("#### Model Types")
prefill_model_types = gr.CheckboxGroup(
choices=list(data["Model"].unique()),
label="Model Types",
value=list(data["Model"].unique()) # Default to all models
)
with gr.Column():
gr.Markdown("#### Datasets")
prefill_datasets = gr.CheckboxGroup(
choices=list(data[data["Stage"] == "prefill"]["Dataset"].unique()),
label="Datasets",
value=list(data[data["Stage"] == "prefill"]["Dataset"].unique()) # Default to all datasets for prefill
)
# Prefill-stage compression results
with gr.Row():
gr.Markdown("## Results")
# Initialize the Prefill Dataframe with default data
prefill_default = filter_and_display(
["Quality", "TTFT (s)"],
list(data["Model"].unique()),
list(data[data["Stage"] == "prefill"]["Dataset"].unique()),
"prefill"
)
prefill_results = gr.Dataframe(
value=prefill_default
)
# Prefill-stage visualization (Static initially)
with gr.Row():
gr.Markdown("### Prefill-stage Visualization")
with gr.Row():
prefill_plot = gr.Plot(
value=create_prefill_visualization(prefill_default)
)
# Decode-stage selection
with gr.Row():
gr.Markdown("## Decode-Stage KV Cache Compression")
with gr.Row():
with gr.Column():
gr.Markdown("#### Select Columns to Display")
decode_columns_to_display = gr.CheckboxGroup(
choices=["Throughput (token/s)", "Quality", "Link"],
label="Columns",
value=["Throughput (token/s)", "Quality"]
)
with gr.Column():
gr.Markdown("#### Model Types")
decode_model_types = gr.CheckboxGroup(
choices=list(data["Model"].unique()),
label="Model Types",
value=list(data["Model"].unique()) # Default to all models
)
with gr.Column():
gr.Markdown("#### Datasets")
decode_datasets = gr.CheckboxGroup(
choices=list(data[data["Stage"] == "decode"]["Dataset"].unique()),
label="Datasets",
value=list(data[data["Stage"] == "decode"]["Dataset"].unique()) # Default to all datasets for decode
)
# Decode-stage compression results
with gr.Row():
gr.Markdown("## Results")
# Initialize the Decode Dataframe with default data
decode_default = filter_and_display(
["Throughput (token/s)", "Quality"],
list(data["Model"].unique()),
list(data[data["Stage"] == "decode"]["Dataset"].unique()),
"decode"
)
decode_results = gr.Dataframe(
value=decode_default
)
# Decode-stage visualization (Static initially)
with gr.Row():
gr.Markdown("### Decode-Stage Visualization")
with gr.Row():
decode_plot = gr.Plot(
value=create_decode_visualization(decode_default)
)
# AUTO-UPDATE FUNCTIONS:
# (We only update the DataFrame, NOT the Plot)
def auto_update_prefill(selected_columns, model_types, datasets):
if not model_types or not datasets:
# Return an empty DataFrame if no selection is made
return pd.DataFrame(columns=["Method", "Model"] + selected_columns)
filtered_data = filter_and_display(selected_columns, model_types, datasets, "prefill")
return filtered_data
def auto_update_decode(selected_columns, model_types, datasets):
if not model_types or not datasets:
# Return an empty DataFrame if no selection is made
return pd.DataFrame(columns=["Method", "Model"] + selected_columns)
filtered_data = filter_and_display(selected_columns, model_types, datasets, "decode")
return filtered_data
# Only update the tables when filters change
prefill_columns_to_display.change(
auto_update_prefill,
inputs=[prefill_columns_to_display, prefill_model_types, prefill_datasets],
outputs=[prefill_results]
)
prefill_model_types.change(
auto_update_prefill,
inputs=[prefill_columns_to_display, prefill_model_types, prefill_datasets],
outputs=[prefill_results]
)
prefill_datasets.change(
auto_update_prefill,
inputs=[prefill_columns_to_display, prefill_model_types, prefill_datasets],
outputs=[prefill_results]
)
decode_columns_to_display.change(
auto_update_decode,
inputs=[decode_columns_to_display, decode_model_types, decode_datasets],
outputs=[decode_results]
)
decode_model_types.change(
auto_update_decode,
inputs=[decode_columns_to_display, decode_model_types, decode_datasets],
outputs=[decode_results]
)
decode_datasets.change(
auto_update_decode,
inputs=[decode_columns_to_display, decode_model_types, decode_datasets],
outputs=[decode_results]
)
# Reload button to restart the whole website
def reload_website():
# This function will trigger a page reload using JavaScript
return gr.JS("window.location.reload();")
reload_button = gr.Button("Reload Data")
reload_button.click(
reload_website
)
with gr.TabItem("About"):
gr.Markdown(about_markdown) # Use the imported about page content
with gr.TabItem("Submission Instructions"):
gr.Markdown(submission_markdown) # Use the imported submission page content
return app
if __name__ == "__main__":
app = create_gradio_app()
app.launch()
|