Spaces:
Running
Running
lucabadiali
commited on
Commit
·
b603fd0
1
Parent(s):
f97ec54
Added app testing
Browse files- README.md +57 -1
- data/load_data.py +11 -0
- nb.ipynb +382 -148
- pytest.ini +2 -0
- src/__pycache__/app.cpython-311.pyc +0 -0
- src/__pycache__/utils.cpython-311.pyc +0 -0
- src/app/__init__.py +0 -0
- src/app/__pycache__/__init__.cpython-311.pyc +0 -0
- src/app/__pycache__/app.cpython-311.pyc +0 -0
- src/app/__pycache__/utils.cpython-311.pyc +0 -0
- src/app/app.py +77 -0
- src/app/app_post.py +22 -0
- src/app/utils.py +7 -0
- tests/__pycache__/test_app.cpython-311-pytest-9.0.0.pyc +0 -0
- tests/__pycache__/test_data.cpython-311-pytest-9.0.0.pyc +0 -0
- tests/test_app.py +89 -0
- tests/test_data.py +4 -0
README.md
CHANGED
|
@@ -1 +1,57 @@
|
|
| 1 |
-
# MLOPS_Project
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MLOPS_Project
|
| 2 |
+
|
| 3 |
+
FASE 1)
|
| 4 |
+
- Riuscire ad allenare un modello
|
| 5 |
+
|
| 6 |
+
FASE 2)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
Public Colab notebook (single link)
|
| 10 |
+
|
| 11 |
+
Loads a ready model: cardiffnlp/twitter-roberta-base-sentiment-latest (or -sep2022).
|
| 12 |
+
|
| 13 |
+
Loads a public dataset (e.g., tweet_eval/sentiment).
|
| 14 |
+
|
| 15 |
+
Runs inference + evaluation (accuracy, F1 macro, recall macro).
|
| 16 |
+
|
| 17 |
+
(Optional but easy) light fine-tuning on a fraction of the data (small batch, few epochs).
|
| 18 |
+
|
| 19 |
+
Shows a tiny monitoring demo: aggregate % positive/neutral/negative over a sample and plot a time series (synthetic timestamps are fine).
|
| 20 |
+
|
| 21 |
+
Links to your GitHub repo at the top.
|
| 22 |
+
|
| 23 |
+
Public GitHub repo
|
| 24 |
+
|
| 25 |
+
src/ with:
|
| 26 |
+
|
| 27 |
+
train.py — fine-tuning script (works on CPU/MPS/CUDA; small batch + gradient accumulation).
|
| 28 |
+
|
| 29 |
+
eval.py — evaluate a model checkpoint on validation/test.
|
| 30 |
+
|
| 31 |
+
infer.py — batch inference from CSV/JSONL.
|
| 32 |
+
|
| 33 |
+
app.py — (optional) Gradio mini UI.
|
| 34 |
+
|
| 35 |
+
data_utils.py — your subset functions + tokenization helpers.
|
| 36 |
+
|
| 37 |
+
requirements.txt
|
| 38 |
+
|
| 39 |
+
README.md — how to run locally + what the project does.
|
| 40 |
+
|
| 41 |
+
.github/workflows/ci.yml — CI runs lint + tests + a tiny dry-run of training (e.g., 500 samples, 1 epoch).
|
| 42 |
+
|
| 43 |
+
MODEL_CARD.md — brief model card (data, metrics, limits/bias).
|
| 44 |
+
|
| 45 |
+
tests/test_smoke.py — imports + 10-sample training/eval smoke test.
|
| 46 |
+
|
| 47 |
+
Minimal documentation (in README)
|
| 48 |
+
|
| 49 |
+
Goal: monitor social sentiment for MachineInnovators Inc.
|
| 50 |
+
|
| 51 |
+
Model choice: use pre-trained RoBERTa; FastText kept as optional baseline.
|
| 52 |
+
|
| 53 |
+
Pipeline overview: data → tokenize → (optional fine-tune) → evaluate → artifact save → (optional deploy).
|
| 54 |
+
|
| 55 |
+
How to reproduce: exact commands.
|
| 56 |
+
|
| 57 |
+
Monitoring idea: log predictions; compute daily sentiment mix; simple drift check (distribution shift of logits).
|
data/load_data.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset, DatasetDict
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
DATA_FOLDER_PATH = Path(__file__).resolve().parent
|
| 6 |
+
dataset_path = DATA_FOLDER_PATH / "dataset"
|
| 7 |
+
|
| 8 |
+
# def get_tweet_eval_sentiment() -> DatasetDict:
|
| 9 |
+
# return load_dataset("tweet_eval", "sentiment")
|
| 10 |
+
dataset = load_dataset("tweet_eval", "sentiment")
|
| 11 |
+
dataset.save_to_disk(dataset_path)
|
nb.ipynb
CHANGED
|
@@ -2,17 +2,25 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"id": "3a03d7b9",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
{
|
| 10 |
"data": {
|
| 11 |
"text/plain": [
|
| 12 |
-
"device(type='
|
| 13 |
]
|
| 14 |
},
|
| 15 |
-
"execution_count":
|
| 16 |
"metadata": {},
|
| 17 |
"output_type": "execute_result"
|
| 18 |
}
|
|
@@ -28,8 +36,10 @@
|
|
| 28 |
"import torch.utils.data as data_utils\n",
|
| 29 |
"import torch\n",
|
| 30 |
"\n",
|
| 31 |
-
"
|
| 32 |
-
"device\n"
|
|
|
|
|
|
|
| 33 |
]
|
| 34 |
},
|
| 35 |
{
|
|
@@ -50,7 +60,7 @@
|
|
| 50 |
},
|
| 51 |
{
|
| 52 |
"cell_type": "code",
|
| 53 |
-
"execution_count":
|
| 54 |
"id": "0b451180",
|
| 55 |
"metadata": {},
|
| 56 |
"outputs": [
|
|
@@ -60,7 +70,7 @@
|
|
| 60 |
"['negative', 'neutral', 'positive']"
|
| 61 |
]
|
| 62 |
},
|
| 63 |
-
"execution_count":
|
| 64 |
"metadata": {},
|
| 65 |
"output_type": "execute_result"
|
| 66 |
}
|
|
@@ -79,103 +89,25 @@
|
|
| 79 |
},
|
| 80 |
{
|
| 81 |
"cell_type": "code",
|
| 82 |
-
"execution_count":
|
| 83 |
-
"id": "
|
| 84 |
"metadata": {},
|
| 85 |
"outputs": [
|
| 86 |
{
|
| 87 |
"name": "stderr",
|
| 88 |
"output_type": "stream",
|
| 89 |
"text": [
|
| 90 |
-
"Some weights of
|
| 91 |
-
"
|
|
|
|
| 92 |
]
|
| 93 |
}
|
| 94 |
],
|
| 95 |
"source": [
|
| 96 |
-
"MODEL = \"FacebookAI/roberta-base\"\n",
|
| 97 |
-
"model = RobertaForSequenceClassification.from_pretrained(\n",
|
| 98 |
-
" MODEL, num_labels=3, problem_type=\"multi_label_classification\")\n",
|
| 99 |
-
"tokenizer = AutoTokenizer.from_pretrained(MODEL)"
|
| 100 |
-
]
|
| 101 |
-
},
|
| 102 |
-
{
|
| 103 |
-
"cell_type": "code",
|
| 104 |
-
"execution_count": 92,
|
| 105 |
-
"id": "c4bafe30",
|
| 106 |
-
"metadata": {},
|
| 107 |
-
"outputs": [],
|
| 108 |
-
"source": [
|
| 109 |
-
"train_text_file = \"train_text.txt\"\n",
|
| 110 |
-
"with open(train_text_file, \"r\") as f:\n",
|
| 111 |
-
" texts = f.readlines()\n",
|
| 112 |
-
"\n",
|
| 113 |
-
"train_label_file = \"train_labels.txt\"\n",
|
| 114 |
-
"with open(train_label_file, \"r\") as f:\n",
|
| 115 |
-
" labels = f.readlines()\n",
|
| 116 |
"\n",
|
| 117 |
-
"
|
| 118 |
-
"\n",
|
| 119 |
-
"texts, labels = texts[:100], labels[:100]\n",
|
| 120 |
-
"\n"
|
| 121 |
-
]
|
| 122 |
-
},
|
| 123 |
-
{
|
| 124 |
-
"cell_type": "code",
|
| 125 |
-
"execution_count": null,
|
| 126 |
-
"id": "87030ba1",
|
| 127 |
-
"metadata": {},
|
| 128 |
-
"outputs": [
|
| 129 |
-
{
|
| 130 |
-
"data": {
|
| 131 |
-
"text/plain": [
|
| 132 |
-
"(2, 100)"
|
| 133 |
-
]
|
| 134 |
-
},
|
| 135 |
-
"execution_count": 93,
|
| 136 |
-
"metadata": {},
|
| 137 |
-
"output_type": "execute_result"
|
| 138 |
-
}
|
| 139 |
-
],
|
| 140 |
-
"source": [
|
| 141 |
-
"encoded_inputs = tokenizer([ preprocess(t.strip()) for t in texts], return_tensors='pt', padding=True,\n",
|
| 142 |
-
" truncation=True)\n",
|
| 143 |
-
"labels = [int(labels[i].strip()) for i in range(len(labels))]\n",
|
| 144 |
-
"labels = torch.tensor(labels, dtype=torch.int)\n",
|
| 145 |
-
"len(encoded_inputs), len(labels)"
|
| 146 |
-
]
|
| 147 |
-
},
|
| 148 |
-
{
|
| 149 |
-
"cell_type": "code",
|
| 150 |
-
"execution_count": 94,
|
| 151 |
-
"id": "e9548356",
|
| 152 |
-
"metadata": {},
|
| 153 |
-
"outputs": [],
|
| 154 |
-
"source": [
|
| 155 |
-
"dataset = data_utils.TensorDataset(encoded_inputs[\"input_ids\"], encoded_inputs[\"attention_mask\"], labels)\n",
|
| 156 |
-
"test_dataloader = data_utils.DataLoader(dataset, batch_size=10, shuffle=True)\n",
|
| 157 |
-
"\n"
|
| 158 |
-
]
|
| 159 |
-
},
|
| 160 |
-
{
|
| 161 |
-
"cell_type": "code",
|
| 162 |
-
"execution_count": null,
|
| 163 |
-
"id": "2f40f7fd",
|
| 164 |
-
"metadata": {},
|
| 165 |
-
"outputs": [],
|
| 166 |
-
"source": []
|
| 167 |
-
},
|
| 168 |
-
{
|
| 169 |
-
"cell_type": "code",
|
| 170 |
-
"execution_count": null,
|
| 171 |
-
"id": "08435697",
|
| 172 |
-
"metadata": {},
|
| 173 |
-
"outputs": [],
|
| 174 |
-
"source": [
|
| 175 |
-
"\n",
|
| 176 |
-
"model = AutoModelForSequenceClassification.from_pretrained(MODEL)\n",
|
| 177 |
"tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
|
| 178 |
-
"text = \"
|
| 179 |
"text = preprocess(text)\n",
|
| 180 |
"encoded_input = tokenizer(text, return_tensors='pt')\n",
|
| 181 |
"output = model(**encoded_input)\n",
|
|
@@ -185,7 +117,7 @@
|
|
| 185 |
},
|
| 186 |
{
|
| 187 |
"cell_type": "code",
|
| 188 |
-
"execution_count":
|
| 189 |
"id": "cf6dfc8f",
|
| 190 |
"metadata": {},
|
| 191 |
"outputs": [
|
|
@@ -193,9 +125,9 @@
|
|
| 193 |
"name": "stdout",
|
| 194 |
"output_type": "stream",
|
| 195 |
"text": [
|
| 196 |
-
"1)
|
| 197 |
-
"2)
|
| 198 |
-
"3) negative 0.
|
| 199 |
]
|
| 200 |
}
|
| 201 |
],
|
|
@@ -218,7 +150,7 @@
|
|
| 218 |
},
|
| 219 |
{
|
| 220 |
"cell_type": "code",
|
| 221 |
-
"execution_count":
|
| 222 |
"id": "0a6382f4",
|
| 223 |
"metadata": {},
|
| 224 |
"outputs": [],
|
|
@@ -232,7 +164,7 @@
|
|
| 232 |
"from datasets import load_dataset, concatenate_datasets\n",
|
| 233 |
"\n",
|
| 234 |
"def tokenize_function(examples):\n",
|
| 235 |
-
" return tokenizer(examples[\"text\"],
|
| 236 |
"\n",
|
| 237 |
"def compute_metrics(eval_pred):\n",
|
| 238 |
" logits, labels = eval_pred\n",
|
|
@@ -247,110 +179,412 @@
|
|
| 247 |
},
|
| 248 |
{
|
| 249 |
"cell_type": "code",
|
| 250 |
-
"execution_count":
|
| 251 |
-
"id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
"metadata": {},
|
| 253 |
"outputs": [
|
| 254 |
{
|
| 255 |
"name": "stderr",
|
| 256 |
"output_type": "stream",
|
| 257 |
"text": [
|
| 258 |
-
"
|
| 259 |
-
"Map: 100%|██████████| 12284/12284 [00:03<00:00, 3758.76 examples/s]\n",
|
| 260 |
-
"Map: 100%|██████████| 2000/2000 [00:00<00:00, 4820.04 examples/s]\n",
|
| 261 |
"Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at cardiffnlp/twitter-roberta-base-sep2022 and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
|
| 262 |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
| 263 |
-
"/
|
| 264 |
-
"
|
| 265 |
]
|
| 266 |
},
|
| 267 |
{
|
| 268 |
-
"
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
}
|
| 278 |
],
|
| 279 |
"source": [
|
| 280 |
-
"
|
| 281 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
"tokenized_datasets = dataset.map(tokenize_function, batched=True)\n",
|
| 283 |
"\n",
|
| 284 |
-
"#
|
| 285 |
-
"
|
| 286 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
"\n",
|
| 288 |
-
"model = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
"\n",
|
|
|
|
|
|
|
|
|
|
| 290 |
"\n",
|
| 291 |
"training_args = TrainingArguments(\n",
|
| 292 |
-
" output_dir=\"
|
| 293 |
" learning_rate=1e-5,\n",
|
| 294 |
-
" per_device_train_batch_size=
|
| 295 |
-
" per_device_eval_batch_size=
|
| 296 |
-
"
|
|
|
|
| 297 |
" weight_decay=0.01,\n",
|
| 298 |
" warmup_ratio=0.1,\n",
|
|
|
|
| 299 |
"\n",
|
| 300 |
-
" eval_strategy=\"
|
| 301 |
-
" logging_strategy=\"
|
| 302 |
-
" save_strategy=\"
|
|
|
|
|
|
|
|
|
|
| 303 |
"\n",
|
| 304 |
" load_best_model_at_end=True,\n",
|
| 305 |
" metric_for_best_model=\"recall\",\n",
|
| 306 |
" greater_is_better=True,\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
" report_to=\"none\",\n",
|
| 308 |
")\n",
|
| 309 |
"\n",
|
| 310 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
"\n",
|
| 312 |
"trainer = Trainer(\n",
|
| 313 |
" model=model,\n",
|
| 314 |
" args=training_args,\n",
|
| 315 |
-
" train_dataset=
|
| 316 |
-
" eval_dataset=
|
| 317 |
" compute_metrics=compute_metrics,\n",
|
|
|
|
|
|
|
|
|
|
| 318 |
")\n",
|
| 319 |
"\n",
|
|
|
|
|
|
|
| 320 |
"trainer.train()\n",
|
| 321 |
"\n",
|
| 322 |
-
"trainer.
|
| 323 |
-
"
|
| 324 |
-
"
|
| 325 |
-
"\n"
|
|
|
|
|
|
|
| 326 |
]
|
| 327 |
},
|
| 328 |
{
|
| 329 |
"cell_type": "code",
|
| 330 |
-
"execution_count":
|
| 331 |
-
"id": "
|
| 332 |
"metadata": {},
|
| 333 |
"outputs": [
|
| 334 |
{
|
| 335 |
-
"
|
| 336 |
-
"
|
| 337 |
-
"
|
| 338 |
-
|
| 339 |
-
"\
|
| 340 |
-
"
|
| 341 |
-
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mtorch\u001b[49m.cuda.is_available()\n",
|
| 342 |
-
"\u001b[31mNameError\u001b[39m: name 'torch' is not defined"
|
| 343 |
]
|
| 344 |
}
|
| 345 |
],
|
| 346 |
"source": [
|
| 347 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
]
|
| 349 |
},
|
| 350 |
{
|
| 351 |
"cell_type": "code",
|
| 352 |
"execution_count": null,
|
| 353 |
-
"id": "
|
| 354 |
"metadata": {},
|
| 355 |
"outputs": [],
|
| 356 |
"source": []
|
|
@@ -358,7 +592,7 @@
|
|
| 358 |
],
|
| 359 |
"metadata": {
|
| 360 |
"kernelspec": {
|
| 361 |
-
"display_name": "
|
| 362 |
"language": "python",
|
| 363 |
"name": "python3"
|
| 364 |
},
|
|
@@ -372,7 +606,7 @@
|
|
| 372 |
"name": "python",
|
| 373 |
"nbconvert_exporter": "python",
|
| 374 |
"pygments_lexer": "ipython3",
|
| 375 |
-
"version": "3.
|
| 376 |
}
|
| 377 |
},
|
| 378 |
"nbformat": 4,
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
"id": "3a03d7b9",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stderr",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"/Users/lucabadiali/Desktop/professionAI/modulo9/Project/MLOPS_Project/ProjectEnv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 14 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
{
|
| 18 |
"data": {
|
| 19 |
"text/plain": [
|
| 20 |
+
"device(type='mps')"
|
| 21 |
]
|
| 22 |
},
|
| 23 |
+
"execution_count": 1,
|
| 24 |
"metadata": {},
|
| 25 |
"output_type": "execute_result"
|
| 26 |
}
|
|
|
|
| 36 |
"import torch.utils.data as data_utils\n",
|
| 37 |
"import torch\n",
|
| 38 |
"\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"device = torch.device(\"mps\" if torch.mps.is_available() else \n",
|
| 41 |
+
" \"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 42 |
+
"device"
|
| 43 |
]
|
| 44 |
},
|
| 45 |
{
|
|
|
|
| 60 |
},
|
| 61 |
{
|
| 62 |
"cell_type": "code",
|
| 63 |
+
"execution_count": 3,
|
| 64 |
"id": "0b451180",
|
| 65 |
"metadata": {},
|
| 66 |
"outputs": [
|
|
|
|
| 70 |
"['negative', 'neutral', 'positive']"
|
| 71 |
]
|
| 72 |
},
|
| 73 |
+
"execution_count": 3,
|
| 74 |
"metadata": {},
|
| 75 |
"output_type": "execute_result"
|
| 76 |
}
|
|
|
|
| 89 |
},
|
| 90 |
{
|
| 91 |
"cell_type": "code",
|
| 92 |
+
"execution_count": 7,
|
| 93 |
+
"id": "08435697",
|
| 94 |
"metadata": {},
|
| 95 |
"outputs": [
|
| 96 |
{
|
| 97 |
"name": "stderr",
|
| 98 |
"output_type": "stream",
|
| 99 |
"text": [
|
| 100 |
+
"Some weights of the model checkpoint at cardiffnlp/twitter-roberta-base-sentiment-latest were not used when initializing RobertaForSequenceClassification: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n",
|
| 101 |
+
"- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 102 |
+
"- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
| 103 |
]
|
| 104 |
}
|
| 105 |
],
|
| 106 |
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
"\n",
|
| 108 |
+
"model = AutoModelForSequenceClassification.from_pretrained(\"cardiffnlp/twitter-roberta-base-sentiment-latest\")\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
"tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
|
| 110 |
+
"text = \"today I ate some pasta\"\n",
|
| 111 |
"text = preprocess(text)\n",
|
| 112 |
"encoded_input = tokenizer(text, return_tensors='pt')\n",
|
| 113 |
"output = model(**encoded_input)\n",
|
|
|
|
| 117 |
},
|
| 118 |
{
|
| 119 |
"cell_type": "code",
|
| 120 |
+
"execution_count": 17,
|
| 121 |
"id": "cf6dfc8f",
|
| 122 |
"metadata": {},
|
| 123 |
"outputs": [
|
|
|
|
| 125 |
"name": "stdout",
|
| 126 |
"output_type": "stream",
|
| 127 |
"text": [
|
| 128 |
+
"1) neutral 0.6674\n",
|
| 129 |
+
"2) positive 0.3132\n",
|
| 130 |
+
"3) negative 0.0194\n"
|
| 131 |
]
|
| 132 |
}
|
| 133 |
],
|
|
|
|
| 150 |
},
|
| 151 |
{
|
| 152 |
"cell_type": "code",
|
| 153 |
+
"execution_count": 21,
|
| 154 |
"id": "0a6382f4",
|
| 155 |
"metadata": {},
|
| 156 |
"outputs": [],
|
|
|
|
| 164 |
"from datasets import load_dataset, concatenate_datasets\n",
|
| 165 |
"\n",
|
| 166 |
"def tokenize_function(examples):\n",
|
| 167 |
+
" return tokenizer(examples[\"text\"], max_length=128, truncation=True)\n",
|
| 168 |
"\n",
|
| 169 |
"def compute_metrics(eval_pred):\n",
|
| 170 |
" logits, labels = eval_pred\n",
|
|
|
|
| 179 |
},
|
| 180 |
{
|
| 181 |
"cell_type": "code",
|
| 182 |
+
"execution_count": 22,
|
| 183 |
+
"id": "fcb7fe6d",
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"outputs": [
|
| 186 |
+
{
|
| 187 |
+
"data": {
|
| 188 |
+
"text/plain": [
|
| 189 |
+
"DatasetDict({\n",
|
| 190 |
+
" train: Dataset({\n",
|
| 191 |
+
" features: ['text', 'label'],\n",
|
| 192 |
+
" num_rows: 45615\n",
|
| 193 |
+
" })\n",
|
| 194 |
+
" test: Dataset({\n",
|
| 195 |
+
" features: ['text', 'label'],\n",
|
| 196 |
+
" num_rows: 12284\n",
|
| 197 |
+
" })\n",
|
| 198 |
+
" validation: Dataset({\n",
|
| 199 |
+
" features: ['text', 'label'],\n",
|
| 200 |
+
" num_rows: 2000\n",
|
| 201 |
+
" })\n",
|
| 202 |
+
"})"
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
"execution_count": 22,
|
| 206 |
+
"metadata": {},
|
| 207 |
+
"output_type": "execute_result"
|
| 208 |
+
}
|
| 209 |
+
],
|
| 210 |
+
"source": [
|
| 211 |
+
"dataset"
|
| 212 |
+
]
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"cell_type": "code",
|
| 216 |
+
"execution_count": 12,
|
| 217 |
+
"id": "0fabaaea",
|
| 218 |
"metadata": {},
|
| 219 |
"outputs": [
|
| 220 |
{
|
| 221 |
"name": "stderr",
|
| 222 |
"output_type": "stream",
|
| 223 |
"text": [
|
| 224 |
+
"`torch_dtype` is deprecated! Use `dtype` instead!\n",
|
|
|
|
|
|
|
| 225 |
"Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at cardiffnlp/twitter-roberta-base-sep2022 and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
|
| 226 |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
| 227 |
+
"/var/folders/nc/1wpyndzx5ps8nbt0b5zm9jx80000gn/T/ipykernel_2067/3094520460.py:119: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
|
| 228 |
+
" trainer = Trainer(\n"
|
| 229 |
]
|
| 230 |
},
|
| 231 |
{
|
| 232 |
+
"data": {
|
| 233 |
+
"text/html": [
|
| 234 |
+
"\n",
|
| 235 |
+
" <div>\n",
|
| 236 |
+
" \n",
|
| 237 |
+
" <progress value='858' max='858' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 238 |
+
" [858/858 21:50, Epoch 3/3]\n",
|
| 239 |
+
" </div>\n",
|
| 240 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 241 |
+
" <thead>\n",
|
| 242 |
+
" <tr style=\"text-align: left;\">\n",
|
| 243 |
+
" <th>Step</th>\n",
|
| 244 |
+
" <th>Training Loss</th>\n",
|
| 245 |
+
" <th>Validation Loss</th>\n",
|
| 246 |
+
" <th>Accuracy</th>\n",
|
| 247 |
+
" <th>F1 Macro</th>\n",
|
| 248 |
+
" <th>Recall</th>\n",
|
| 249 |
+
" </tr>\n",
|
| 250 |
+
" </thead>\n",
|
| 251 |
+
" <tbody>\n",
|
| 252 |
+
" <tr>\n",
|
| 253 |
+
" <td>500</td>\n",
|
| 254 |
+
" <td>0.594100</td>\n",
|
| 255 |
+
" <td>0.668015</td>\n",
|
| 256 |
+
" <td>0.716000</td>\n",
|
| 257 |
+
" <td>0.697675</td>\n",
|
| 258 |
+
" <td>0.702171</td>\n",
|
| 259 |
+
" </tr>\n",
|
| 260 |
+
" </tbody>\n",
|
| 261 |
+
"</table><p>"
|
| 262 |
+
],
|
| 263 |
+
"text/plain": [
|
| 264 |
+
"<IPython.core.display.HTML object>"
|
| 265 |
+
]
|
| 266 |
+
},
|
| 267 |
+
"metadata": {},
|
| 268 |
+
"output_type": "display_data"
|
| 269 |
}
|
| 270 |
],
|
| 271 |
"source": [
|
| 272 |
+
"import os\n",
|
| 273 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # avoid fork/parallelism warnings on macOS\n",
|
| 274 |
+
"\n",
|
| 275 |
+
"import torch\n",
|
| 276 |
+
"from transformers import (\n",
|
| 277 |
+
" AutoTokenizer, AutoModelForSequenceClassification,\n",
|
| 278 |
+
" TrainingArguments, Trainer, EarlyStoppingCallback,\n",
|
| 279 |
+
" DataCollatorWithPadding\n",
|
| 280 |
+
")\n",
|
| 281 |
+
"import evaluate\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"# --- Device detection ---\n",
|
| 284 |
+
"if torch.cuda.is_available():\n",
|
| 285 |
+
" device = \"cuda\"\n",
|
| 286 |
+
" use_bf16 = torch.cuda.is_bf16_supported()\n",
|
| 287 |
+
" use_fp16 = not use_bf16\n",
|
| 288 |
+
"elif torch.backends.mps.is_available():\n",
|
| 289 |
+
" device = \"mps\"\n",
|
| 290 |
+
" use_bf16 = False\n",
|
| 291 |
+
" use_fp16 = False\n",
|
| 292 |
+
"else:\n",
|
| 293 |
+
" device = \"cpu\"\n",
|
| 294 |
+
" use_bf16 = False\n",
|
| 295 |
+
" use_fp16 = False\n",
|
| 296 |
+
"\n",
|
| 297 |
+
"MODEL_NAME = \"cardiffnlp/twitter-roberta-base-sep2022\"\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"# --- Tokenizer: keep short max_length to save memory ---\n",
|
| 300 |
+
"tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True, model_max_length=128)\n",
|
| 301 |
+
"\n",
|
| 302 |
+
"def tokenize_function(batch):\n",
|
| 303 |
+
" return tokenizer(\n",
|
| 304 |
+
" batch[\"text\"],\n",
|
| 305 |
+
" truncation=True,\n",
|
| 306 |
+
" max_length=128,\n",
|
| 307 |
+
" padding=False # we will pad per-batch via DataCollatorWithPadding\n",
|
| 308 |
+
" )\n",
|
| 309 |
+
"\n",
|
| 310 |
+
"# If your dataset column is \"label\", keep it; Trainer can handle it.\n",
|
| 311 |
"tokenized_datasets = dataset.map(tokenize_function, batched=True)\n",
|
| 312 |
"\n",
|
| 313 |
+
"# --- Data collator that pads dynamically ---\n",
|
| 314 |
+
"data_collator = DataCollatorWithPadding(\n",
|
| 315 |
+
" tokenizer=tokenizer,\n",
|
| 316 |
+
" pad_to_multiple_of=8 if (device == \"cuda\" and (use_bf16 or use_fp16)) else None\n",
|
| 317 |
+
")\n",
|
| 318 |
+
"\n",
|
| 319 |
+
"# --- Model dtype choice ---\n",
|
| 320 |
+
"if device == \"cuda\" and use_bf16:\n",
|
| 321 |
+
" load_dtype = torch.bfloat16\n",
|
| 322 |
+
"elif device == \"cuda\" and use_fp16:\n",
|
| 323 |
+
" load_dtype = torch.float16\n",
|
| 324 |
+
"else:\n",
|
| 325 |
+
" load_dtype = torch.float32 # MPS/CPU -> fp32\n",
|
| 326 |
"\n",
|
| 327 |
+
"model = AutoModelForSequenceClassification.from_pretrained(\n",
|
| 328 |
+
" MODEL_NAME, num_labels=3, torch_dtype=load_dtype\n",
|
| 329 |
+
")\n",
|
| 330 |
+
"model.gradient_checkpointing_enable()\n",
|
| 331 |
+
"model.config.use_cache = False\n",
|
| 332 |
"\n",
|
| 333 |
+
"# --- Training args: stop forking on macOS, fix pin_memory ---\n",
|
| 334 |
+
"trainer_fp16 = bool(device == \"cuda\" and use_fp16)\n",
|
| 335 |
+
"trainer_bf16 = bool(device == \"cuda\" and use_bf16)\n",
|
| 336 |
"\n",
|
| 337 |
"training_args = TrainingArguments(\n",
|
| 338 |
+
" output_dir=\"artifacts\",\n",
|
| 339 |
" learning_rate=1e-5,\n",
|
| 340 |
+
" per_device_train_batch_size=4,\n",
|
| 341 |
+
" per_device_eval_batch_size=8,\n",
|
| 342 |
+
" gradient_accumulation_steps=8,\n",
|
| 343 |
+
" num_train_epochs=3,\n",
|
| 344 |
" weight_decay=0.01,\n",
|
| 345 |
" warmup_ratio=0.1,\n",
|
| 346 |
+
" lr_scheduler_type=\"linear\",\n",
|
| 347 |
"\n",
|
| 348 |
+
" eval_strategy=\"steps\",\n",
|
| 349 |
+
" logging_strategy=\"steps\",\n",
|
| 350 |
+
" save_strategy=\"steps\",\n",
|
| 351 |
+
" eval_steps=500,\n",
|
| 352 |
+
" logging_steps=100,\n",
|
| 353 |
+
" save_steps=500,\n",
|
| 354 |
"\n",
|
| 355 |
" load_best_model_at_end=True,\n",
|
| 356 |
" metric_for_best_model=\"recall\",\n",
|
| 357 |
" greater_is_better=True,\n",
|
| 358 |
+
" save_total_limit=2,\n",
|
| 359 |
+
"\n",
|
| 360 |
+
" # Precision\n",
|
| 361 |
+
" fp16=trainer_fp16,\n",
|
| 362 |
+
" bf16=trainer_bf16,\n",
|
| 363 |
+
"\n",
|
| 364 |
+
" # DataLoader knobs (avoid fork/tokenizers warning on macOS)\n",
|
| 365 |
+
" dataloader_num_workers=0, # <- key for macOS/MPS\n",
|
| 366 |
+
" dataloader_pin_memory=(device == \"cuda\"), # False on MPS/CPU, True on CUDA\n",
|
| 367 |
+
" group_by_length=True,\n",
|
| 368 |
" report_to=\"none\",\n",
|
| 369 |
")\n",
|
| 370 |
"\n",
|
| 371 |
+
"# --- Metrics (macro recall, etc.) ---\n",
|
| 372 |
+
"recall_metric = evaluate.load(\"recall\")\n",
|
| 373 |
+
"acc_metric = evaluate.load(\"accuracy\")\n",
|
| 374 |
+
"f1_metric = evaluate.load(\"f1\")\n",
|
| 375 |
+
"\n",
|
| 376 |
+
"def compute_metrics(eval_pred):\n",
|
| 377 |
+
" logits, labels = eval_pred\n",
|
| 378 |
+
" preds = logits.argmax(axis=-1)\n",
|
| 379 |
+
" return {\n",
|
| 380 |
+
" \"accuracy\": acc_metric.compute(predictions=preds, references=labels)[\"accuracy\"],\n",
|
| 381 |
+
" \"f1_macro\": f1_metric.compute(predictions=preds, references=labels, average=\"macro\")[\"f1\"],\n",
|
| 382 |
+
" \"recall\": recall_metric.compute(predictions=preds, references=labels, average=\"macro\")[\"recall\"],\n",
|
| 383 |
+
" }\n",
|
| 384 |
+
"\n",
|
| 385 |
+
"callbacks = [EarlyStoppingCallback(early_stopping_patience=2)]\n",
|
| 386 |
+
"\n",
|
| 387 |
+
"small_train = tokenized_datasets[\"train\"].select(range(100))\n",
|
| 388 |
+
"small_eval = tokenized_datasets[\"validation\"].select(range(1))\n",
|
| 389 |
"\n",
|
| 390 |
"trainer = Trainer(\n",
|
| 391 |
" model=model,\n",
|
| 392 |
" args=training_args,\n",
|
| 393 |
+
" train_dataset= train_ds,\n",
|
| 394 |
+
" eval_dataset= eval_ds,\n",
|
| 395 |
" compute_metrics=compute_metrics,\n",
|
| 396 |
+
" data_collator=data_collator, # <- important\n",
|
| 397 |
+
" tokenizer=tokenizer,\n",
|
| 398 |
+
" callbacks=callbacks,\n",
|
| 399 |
")\n",
|
| 400 |
"\n",
|
| 401 |
+
"# Optional explicit device move (Trainer usually handles it)\n",
|
| 402 |
+
"model.to(device)\n",
|
| 403 |
"trainer.train()\n",
|
| 404 |
"\n",
|
| 405 |
+
"trainer.save_model(\"saved_model\")\n",
|
| 406 |
+
"tokenizer.save_pretrained(\"saved_model\")\n",
|
| 407 |
+
"try:\n",
|
| 408 |
+
" trainer.create_model_card()\n",
|
| 409 |
+
"except Exception:\n",
|
| 410 |
+
" pass\n"
|
| 411 |
]
|
| 412 |
},
|
| 413 |
{
|
| 414 |
"cell_type": "code",
|
| 415 |
+
"execution_count": 20,
|
| 416 |
+
"id": "30d9a79b",
|
| 417 |
"metadata": {},
|
| 418 |
"outputs": [
|
| 419 |
{
|
| 420 |
+
"name": "stdout",
|
| 421 |
+
"output_type": "stream",
|
| 422 |
+
"text": [
|
| 423 |
+
"1) neutral 0.7894\n",
|
| 424 |
+
"2) positive 0.1149\n",
|
| 425 |
+
"3) negative 0.0957\n"
|
|
|
|
|
|
|
| 426 |
]
|
| 427 |
}
|
| 428 |
],
|
| 429 |
"source": [
|
| 430 |
+
"text = \"The second law of thermodynamics is about entropy\"\n",
|
| 431 |
+
"text = preprocess(text)\n",
|
| 432 |
+
"encoded_input = tokenizer(text, return_tensors='pt').to(device)\n",
|
| 433 |
+
"output = model(**encoded_input)\n",
|
| 434 |
+
"scores = output[0][0].detach().cpu().numpy()\n",
|
| 435 |
+
"scores = softmax(scores)\n",
|
| 436 |
+
"ranking = np.argsort(scores)\n",
|
| 437 |
+
"ranking = ranking[::-1]\n",
|
| 438 |
+
"for i in range(scores.shape[0]):\n",
|
| 439 |
+
" l = labels[ranking[i]]\n",
|
| 440 |
+
" s = scores[ranking[i]]\n",
|
| 441 |
+
" print(f\"{i+1}) {l} {np.round(float(s), 4)}\")"
|
| 442 |
+
]
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"cell_type": "code",
|
| 446 |
+
"execution_count": 9,
|
| 447 |
+
"id": "c4376c93",
|
| 448 |
+
"metadata": {},
|
| 449 |
+
"outputs": [
|
| 450 |
+
{
|
| 451 |
+
"name": "stderr",
|
| 452 |
+
"output_type": "stream",
|
| 453 |
+
"text": [
|
| 454 |
+
"Map: 100%|██████████| 1000/1000 [00:00<00:00, 10983.68 examples/s]\n"
|
| 455 |
+
]
|
| 456 |
+
}
|
| 457 |
+
],
|
| 458 |
+
"source": [
|
| 459 |
+
"# ---- COPY-PASTE FROM HERE ----\n",
|
| 460 |
+
"import os\n",
|
| 461 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
| 462 |
+
"\n",
|
| 463 |
+
"from datasets import DatasetDict\n",
|
| 464 |
+
"from transformers import AutoTokenizer, DataCollatorWithPadding\n",
|
| 465 |
+
"\n",
|
| 466 |
+
"def make_trainer_ready(\n",
|
| 467 |
+
" raw_ds: DatasetDict,\n",
|
| 468 |
+
" model_name: str = \"cardiffnlp/twitter-roberta-base-sep2022\",\n",
|
| 469 |
+
" train_frac: float = 0.2,\n",
|
| 470 |
+
" val_frac: float = 0.2,\n",
|
| 471 |
+
" seed: int = 42,\n",
|
| 472 |
+
" label_col: str = \"label\",\n",
|
| 473 |
+
" text_col: str = \"text\",\n",
|
| 474 |
+
" max_length: int = 128,\n",
|
| 475 |
+
" pad_to_multiple_of_8_on_cuda: bool = True,\n",
|
| 476 |
+
"):\n",
|
| 477 |
+
" \"\"\"\n",
|
| 478 |
+
" Returns (train_ds, eval_ds, data_collator, tokenizer) ready for HF Trainer.\n",
|
| 479 |
+
" - Ensures there's a validation split (creates one from train if missing).\n",
|
| 480 |
+
" - Takes fractional subsets, stratified by label when possible.\n",
|
| 481 |
+
" - Tokenizes and keeps only the columns Trainer expects.\n",
|
| 482 |
+
" \"\"\"\n",
|
| 483 |
+
" assert 0 < train_frac <= 1.0, \"train_frac must be in (0,1].\"\n",
|
| 484 |
+
" assert 0 < val_frac <= 1.0, \"val_frac must be in (0,1].\"\n",
|
| 485 |
+
" assert text_col in raw_ds[\"train\"].column_names, f\"Missing text column: {text_col}\"\n",
|
| 486 |
+
" assert label_col in raw_ds[\"train\"].column_names, f\"Missing label column: {label_col}\"\n",
|
| 487 |
+
"\n",
|
| 488 |
+
" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True, model_max_length=max_length)\n",
|
| 489 |
+
"\n",
|
| 490 |
+
" # 1) Ensure we have a validation split\n",
|
| 491 |
+
" if \"validation\" not in raw_ds:\n",
|
| 492 |
+
" split = raw_ds[\"train\"].train_test_split(\n",
|
| 493 |
+
" test_size=val_frac,\n",
|
| 494 |
+
" stratify_by_column=label_col if label_col in raw_ds[\"train\"].column_names else None,\n",
|
| 495 |
+
" seed=seed,\n",
|
| 496 |
+
" )\n",
|
| 497 |
+
" raw_ds = DatasetDict(train=split[\"train\"], validation=split[\"test\"])\n",
|
| 498 |
+
" else:\n",
|
| 499 |
+
" raw_ds = DatasetDict(train=raw_ds[\"train\"], validation=raw_ds[\"validation\"])\n",
|
| 500 |
+
"\n",
|
| 501 |
+
" # 2) Take fractions (stratified when possible)\n",
|
| 502 |
+
" def take_frac(ds, frac):\n",
|
| 503 |
+
" if frac >= 1.0: # keep full split\n",
|
| 504 |
+
" return ds\n",
|
| 505 |
+
" out = ds.train_test_split(\n",
|
| 506 |
+
" test_size=1 - frac,\n",
|
| 507 |
+
" stratify_by_column=label_col if label_col in ds.column_names else None,\n",
|
| 508 |
+
" seed=seed,\n",
|
| 509 |
+
" )\n",
|
| 510 |
+
" return out[\"train\"] # the kept fraction\n",
|
| 511 |
+
"\n",
|
| 512 |
+
" small_train = take_frac(raw_ds[\"train\"], train_frac)\n",
|
| 513 |
+
" small_eval = take_frac(raw_ds[\"validation\"], val_frac)\n",
|
| 514 |
+
"\n",
|
| 515 |
+
" # 3) Tokenize (no padding here; we pad per-batch with the collator)\n",
|
| 516 |
+
" def tok(batch):\n",
|
| 517 |
+
" return tokenizer(batch[text_col], truncation=True, max_length=max_length, padding=False)\n",
|
| 518 |
+
"\n",
|
| 519 |
+
" small_train_tok = small_train.map(tok, batched=True, remove_columns=[c for c in small_train.column_names if c not in (text_col, label_col)])\n",
|
| 520 |
+
" small_eval_tok = small_eval.map(tok, batched=True, remove_columns=[c for c in small_eval.column_names if c not in (text_col, label_col)])\n",
|
| 521 |
+
"\n",
|
| 522 |
+
" # 4) Keep only the columns Trainer needs\n",
|
| 523 |
+
" keep_cols = [\"input_ids\", \"attention_mask\", label_col]\n",
|
| 524 |
+
" small_train_tok = small_train_tok.remove_columns([c for c in small_train_tok.column_names if c not in keep_cols])\n",
|
| 525 |
+
" small_eval_tok = small_eval_tok.remove_columns([c for c in small_eval_tok.column_names if c not in keep_cols])\n",
|
| 526 |
+
"\n",
|
| 527 |
+
" # 5) Data collator with dynamic padding (CUDA gets pad_to_multiple_of=8)\n",
|
| 528 |
+
" import torch\n",
|
| 529 |
+
" pad_to_mult = 8 if (pad_to_multiple_of_8_on_cuda and torch.cuda.is_available()) else None\n",
|
| 530 |
+
" data_collator = DataCollatorWithPadding(tokenizer=tokenizer, pad_to_multiple_of=pad_to_mult)\n",
|
| 531 |
+
"\n",
|
| 532 |
+
" return small_train_tok, small_eval_tok, data_collator, tokenizer\n",
|
| 533 |
+
"\n",
|
| 534 |
+
"# ---- USAGE EXAMPLE ----\n",
|
| 535 |
+
"# Assumes you already have `dataset` (a DatasetDict with 'train' (and maybe 'validation')).\n",
|
| 536 |
+
"# Example:\n",
|
| 537 |
+
"# from datasets import load_dataset\n",
|
| 538 |
+
"# dataset = load_dataset(\"tweet_eval\", \"sentiment\")\n",
|
| 539 |
+
"\n",
|
| 540 |
+
"train_ds, eval_ds, data_collator, tokenizer = make_trainer_ready(\n",
|
| 541 |
+
" raw_ds=dataset,\n",
|
| 542 |
+
" model_name=\"cardiffnlp/twitter-roberta-base-sep2022\",\n",
|
| 543 |
+
" train_frac=0.2, # take 20% of train\n",
|
| 544 |
+
" val_frac=0.5, # take 50% of validation\n",
|
| 545 |
+
" seed=42,\n",
|
| 546 |
+
" label_col=\"label\",\n",
|
| 547 |
+
" text_col=\"text\",\n",
|
| 548 |
+
" max_length=128,\n",
|
| 549 |
+
")\n",
|
| 550 |
+
"\n",
|
| 551 |
+
"# Pass directly to Trainer:\n",
|
| 552 |
+
"# from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer\n",
|
| 553 |
+
"# model = AutoModelForSequenceClassification.from_pretrained(\"cardiffnlp/twitter-roberta-base-sep2022\", num_labels=3)\n",
|
| 554 |
+
"# args = TrainingArguments(output_dir=\"out\", per_device_train_batch_size=4, per_device_eval_batch_size=8, evaluation_strategy=\"epoch\", report_to=\"none\")\n",
|
| 555 |
+
"# trainer = Trainer(model=model, args=args, train_dataset=train_ds, eval_dataset=eval_ds, data_collator=data_collator, tokenizer=tokenizer)\n",
|
| 556 |
+
"# trainer.train()\n",
|
| 557 |
+
"# ---- COPY-PASTE UNTIL HERE ----\n"
|
| 558 |
+
]
|
| 559 |
+
},
|
| 560 |
+
{
|
| 561 |
+
"cell_type": "code",
|
| 562 |
+
"execution_count": 11,
|
| 563 |
+
"id": "12f775be",
|
| 564 |
+
"metadata": {},
|
| 565 |
+
"outputs": [
|
| 566 |
+
{
|
| 567 |
+
"data": {
|
| 568 |
+
"text/plain": [
|
| 569 |
+
"Dataset({\n",
|
| 570 |
+
" features: ['label', 'input_ids', 'attention_mask'],\n",
|
| 571 |
+
" num_rows: 1000\n",
|
| 572 |
+
"})"
|
| 573 |
+
]
|
| 574 |
+
},
|
| 575 |
+
"execution_count": 11,
|
| 576 |
+
"metadata": {},
|
| 577 |
+
"output_type": "execute_result"
|
| 578 |
+
}
|
| 579 |
+
],
|
| 580 |
+
"source": [
|
| 581 |
+
"eval_ds"
|
| 582 |
]
|
| 583 |
},
|
| 584 |
{
|
| 585 |
"cell_type": "code",
|
| 586 |
"execution_count": null,
|
| 587 |
+
"id": "f87c7153",
|
| 588 |
"metadata": {},
|
| 589 |
"outputs": [],
|
| 590 |
"source": []
|
|
|
|
| 592 |
],
|
| 593 |
"metadata": {
|
| 594 |
"kernelspec": {
|
| 595 |
+
"display_name": "ProjectEnv",
|
| 596 |
"language": "python",
|
| 597 |
"name": "python3"
|
| 598 |
},
|
|
|
|
| 606 |
"name": "python",
|
| 607 |
"nbconvert_exporter": "python",
|
| 608 |
"pygments_lexer": "ipython3",
|
| 609 |
+
"version": "3.11.10"
|
| 610 |
}
|
| 611 |
},
|
| 612 |
"nbformat": 4,
|
pytest.ini
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[pytest]
|
| 2 |
+
pythonpath = src
|
src/__pycache__/app.cpython-311.pyc
ADDED
|
Binary file (5 kB). View file
|
|
|
src/__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (785 Bytes). View file
|
|
|
src/app/__init__.py
ADDED
|
File without changes
|
src/app/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (198 Bytes). View file
|
|
|
src/app/__pycache__/app.cpython-311.pyc
ADDED
|
Binary file (4.53 kB). View file
|
|
|
src/app/__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (789 Bytes). View file
|
|
|
src/app/app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
from .utils import preprocess
|
| 4 |
+
from scipy.special import softmax
|
| 5 |
+
import numpy as np
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
+
import urllib.request
|
| 8 |
+
import csv
|
| 9 |
+
import requests
|
| 10 |
+
from typing import Union, List
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
app = FastAPI()
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class SentimentQuery(BaseModel):
|
| 19 |
+
input_texts: Union[str, List[str]]
|
| 20 |
+
|
| 21 |
+
task='sentiment'
|
| 22 |
+
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
|
| 23 |
+
with urllib.request.urlopen(mapping_link) as f:
|
| 24 |
+
html = f.read().decode('utf-8').split("\n")
|
| 25 |
+
csvreader = csv.reader(html, delimiter='\t')
|
| 26 |
+
labels = [row[1] for row in csvreader if len(row) > 1]
|
| 27 |
+
|
| 28 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-{task}-latest"
|
| 29 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@app.post("/predict")
|
| 35 |
+
async def analyze_text(query:SentimentQuery):
|
| 36 |
+
|
| 37 |
+
if isinstance(query.input_texts, str):
|
| 38 |
+
input_texts = [query.input_texts]
|
| 39 |
+
else: # already a List[str]
|
| 40 |
+
input_texts = query.input_texts
|
| 41 |
+
encoded_batch = tokenizer(
|
| 42 |
+
[preprocess(t) for t in input_texts],
|
| 43 |
+
padding=True, # pad to same length
|
| 44 |
+
truncation=True, # truncate long texts
|
| 45 |
+
return_tensors="pt",
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
output = model(**encoded_batch)
|
| 50 |
+
|
| 51 |
+
logits = output[0].detach().cpu().numpy()
|
| 52 |
+
scores = softmax(logits, axis=-1)
|
| 53 |
+
pred_labels = scores.argmax(axis=-1)
|
| 54 |
+
|
| 55 |
+
response_body = []
|
| 56 |
+
for i,text in enumerate(input_texts):
|
| 57 |
+
response_body.append(
|
| 58 |
+
{
|
| 59 |
+
"input_text":text,
|
| 60 |
+
"prediction":labels[pred_labels[i]],
|
| 61 |
+
"scores":
|
| 62 |
+
{
|
| 63 |
+
"negative": float(scores[i][0]),
|
| 64 |
+
"neutral": float(scores[i][1]),
|
| 65 |
+
"positive": float(scores[i][2])
|
| 66 |
+
}
|
| 67 |
+
})
|
| 68 |
+
|
| 69 |
+
return {
|
| 70 |
+
"status" : "successful",
|
| 71 |
+
"response_body": response_body
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
import uvicorn
|
| 77 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
src/app/app_post.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
|
| 3 |
+
url = "http://127.0.0.1:8000/predict"
|
| 4 |
+
|
| 5 |
+
data = {
|
| 6 |
+
"input_texts" : [
|
| 7 |
+
"Today I am feeling very happy!!",
|
| 8 |
+
"Today I am not feeling very happy at all!!",
|
| 9 |
+
"Today I am feeling no particular mood."]
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
response = requests.post(url, json=data)
|
| 14 |
+
|
| 15 |
+
if response.status_code == 200:
|
| 16 |
+
response_json = response.json()
|
| 17 |
+
print(response_json["status"])
|
| 18 |
+
for message in response_json["response_body"]:
|
| 19 |
+
print(message)
|
| 20 |
+
|
| 21 |
+
else:
|
| 22 |
+
print(f"error: {response.status_code} - {response.json()}")
|
src/app/utils.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def preprocess(text):
|
| 2 |
+
new_text = []
|
| 3 |
+
for t in text.split(" "):
|
| 4 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
| 5 |
+
t = 'http' if t.startswith('http') else t
|
| 6 |
+
new_text.append(t)
|
| 7 |
+
return " ".join(new_text)
|
tests/__pycache__/test_app.cpython-311-pytest-9.0.0.pyc
ADDED
|
Binary file (23 kB). View file
|
|
|
tests/__pycache__/test_data.cpython-311-pytest-9.0.0.pyc
ADDED
|
Binary file (416 Bytes). View file
|
|
|
tests/test_app.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi.testclient import TestClient
|
| 2 |
+
from app.app import app
|
| 3 |
+
|
| 4 |
+
client = TestClient(app)
|
| 5 |
+
|
| 6 |
+
def test_correct_response_structure():
|
| 7 |
+
data = {
|
| 8 |
+
"input_texts" :
|
| 9 |
+
"Today I am feeling very happy!!"
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
response = client.post("/predict", json = data)
|
| 13 |
+
response_json = response.json()
|
| 14 |
+
assert response.status_code == 200
|
| 15 |
+
assert "status" in response_json.keys()
|
| 16 |
+
assert "response_body" in response_json.keys()
|
| 17 |
+
|
| 18 |
+
response_body = response_json["response_body"][0]
|
| 19 |
+
|
| 20 |
+
assert "input_text" in response_body.keys()
|
| 21 |
+
assert "prediction" in response_body.keys()
|
| 22 |
+
assert "scores" in response_body.keys()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def test_incorrect_response():
|
| 26 |
+
data = {
|
| 27 |
+
"input_texts" :
|
| 28 |
+
5
|
| 29 |
+
}
|
| 30 |
+
response = client.post("/predict", json = data)
|
| 31 |
+
response_json = response.json()
|
| 32 |
+
assert response.status_code == 422 # validation error by pedantic
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def test_single_prediction():
|
| 36 |
+
input_text = "Today I am feeling very happy!!"
|
| 37 |
+
data = {
|
| 38 |
+
"input_texts" : input_text
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
response = client.post("/predict", json = data)
|
| 42 |
+
response_json = response.json()
|
| 43 |
+
assert response.status_code == 200
|
| 44 |
+
assert response_json["status"] == "successful"
|
| 45 |
+
|
| 46 |
+
response_body = response_json["response_body"]
|
| 47 |
+
assert len(response_body) == 1
|
| 48 |
+
|
| 49 |
+
response_body = response_body[0]
|
| 50 |
+
assert response_body["input_text"] == input_text
|
| 51 |
+
assert response_body["prediction"] in ["positive", "negative", "neutral"]
|
| 52 |
+
scores = response_body["scores"]
|
| 53 |
+
assert type(scores)==dict
|
| 54 |
+
assert len(scores)==3
|
| 55 |
+
assert list(scores.keys()) == ["negative", "neutral", "positive"]
|
| 56 |
+
for sentiment in scores.keys():
|
| 57 |
+
assert type(scores[sentiment])==float
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def test_multiple_predictions():
|
| 61 |
+
input_texts = ["Today I am feeling very happy!!",
|
| 62 |
+
"Today I am not feeling very happy at all!!",
|
| 63 |
+
"Today I am feeling no particular mood."]
|
| 64 |
+
data = {
|
| 65 |
+
"input_texts" : input_texts
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
response = client.post("/predict", json = data)
|
| 69 |
+
response_json = response.json()
|
| 70 |
+
assert response.status_code == 200
|
| 71 |
+
assert response_json["status"] == "successful"
|
| 72 |
+
|
| 73 |
+
response_body = response_json["response_body"]
|
| 74 |
+
assert len(response_body) == len(input_texts)
|
| 75 |
+
|
| 76 |
+
for i in range(len(response_body)):
|
| 77 |
+
single_response = response_body[i]
|
| 78 |
+
assert single_response["input_text"] == input_texts[i]
|
| 79 |
+
assert single_response["prediction"] in ["positive", "negative", "neutral"]
|
| 80 |
+
scores = single_response["scores"]
|
| 81 |
+
assert type(scores)==dict
|
| 82 |
+
assert len(scores)==3
|
| 83 |
+
assert list(scores.keys()) == ["negative", "neutral", "positive"]
|
| 84 |
+
for sentiment in scores.keys():
|
| 85 |
+
assert type(scores[sentiment])==float
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
tests/test_data.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
|