File size: 9,109 Bytes
a7fb1fd
 
 
85d3b9b
 
 
 
6eefcb5
b219c38
6eefcb5
a7fb1fd
 
 
 
 
 
85d3b9b
a7fb1fd
85d3b9b
 
 
 
 
 
a7fb1fd
6eefcb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7fb1fd
85d3b9b
a7fb1fd
85d3b9b
6eefcb5
85d3b9b
 
6eefcb5
85d3b9b
 
 
 
 
 
6eefcb5
 
 
 
85d3b9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7fb1fd
6eefcb5
 
b219c38
6eefcb5
b219c38
6eefcb5
 
b219c38
6eefcb5
b219c38
6eefcb5
 
 
 
b219c38
 
 
6eefcb5
 
 
 
 
b219c38
6eefcb5
 
 
 
 
b219c38
6eefcb5
 
b219c38
a7fb1fd
6eefcb5
a7fb1fd
85d3b9b
 
 
 
6eefcb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7fb1fd
 
85d3b9b
a7fb1fd
85d3b9b
 
 
 
6eefcb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7fb1fd
 
85d3b9b
a7fb1fd
85d3b9b
6eefcb5
85d3b9b
 
6eefcb5
 
 
 
 
 
 
 
 
a7fb1fd
6eefcb5
 
 
 
 
 
 
85d3b9b
a7fb1fd
 
6eefcb5
a7fb1fd
3179e10
a7fb1fd
85d3b9b
b219c38
6eefcb5
85d3b9b
 
 
6eefcb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7fb1fd
 
6eefcb5
a7fb1fd
6eefcb5
 
a7fb1fd
 
 
6eefcb5
a7fb1fd
 
6eefcb5
a7fb1fd
6eefcb5
85d3b9b
a7fb1fd
6eefcb5
 
a7fb1fd
6eefcb5
 
 
a7fb1fd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import torch
import spaces
import gradio as gr
import sys
import platform
import diffusers
import transformers
import psutil
import os
import time

from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers import ZImagePipeline, AutoModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig

# ============================================================
# LOGGING BUFFER
# ============================================================
LOGS = ""
def log(msg):
    global LOGS
    print(msg)
    LOGS += msg + "\n"
    return msg


# ============================================================
# SYSTEM METRICS β€” LIVE GPU + CPU MONITORING
# ============================================================
def log_system_stats(tag=""):
    try:
        log(f"\n===== πŸ”₯ SYSTEM STATS {tag} =====")

        # ============= GPU STATS =============
        if torch.cuda.is_available():
            allocated = torch.cuda.memory_allocated(0) / 1e9
            reserved = torch.cuda.memory_reserved(0) / 1e9
            total = torch.cuda.get_device_properties(0).total_memory / 1e9
            free = total - allocated

            log(f"πŸ’  GPU Total     : {total:.2f} GB")
            log(f"πŸ’  GPU Allocated : {allocated:.2f} GB")
            log(f"πŸ’  GPU Reserved  : {reserved:.2f} GB")
            log(f"πŸ’  GPU Free      : {free:.2f} GB")

        # ============= CPU STATS ============
        cpu = psutil.cpu_percent()
        ram_used = psutil.virtual_memory().used / 1e9
        ram_total = psutil.virtual_memory().total / 1e9

        log(f"🧠 CPU Usage     : {cpu}%")
        log(f"🧠 RAM Used      : {ram_used:.2f} GB / {ram_total:.2f} GB")

    except Exception as e:
        log(f"⚠️ Failed to log system stats: {e}")


# ============================================================
# ENVIRONMENT INFO
# ============================================================
log("===================================================")
log("πŸ” Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
log("===================================================\n")

log(f"πŸ“Œ PYTHON VERSION       : {sys.version.replace(chr(10),' ')}")
log(f"πŸ“Œ PLATFORM             : {platform.platform()}")
log(f"πŸ“Œ TORCH VERSION        : {torch.__version__}")
log(f"πŸ“Œ TRANSFORMERS VERSION : {transformers.__version__}")
log(f"πŸ“Œ DIFFUSERS VERSION    : {diffusers.__version__}")
log(f"πŸ“Œ CUDA AVAILABLE       : {torch.cuda.is_available()}")

log_system_stats("AT STARTUP")

if not torch.cuda.is_available():
    raise RuntimeError("❌ CUDA Required")

device = "cuda"
gpu_id = 0

# ============================================================
# MODEL SETTINGS
# ============================================================
model_cache = "./weights/"
model_id = "Tongyi-MAI/Z-Image-Turbo"
torch_dtype = torch.bfloat16
USE_CPU_OFFLOAD = False

log("\n===================================================")
log("🧠 MODEL CONFIGURATION")
log("===================================================")
log(f"Model ID              : {model_id}")
log(f"Model Cache Directory : {model_cache}")
log(f"torch_dtype           : {torch_dtype}")
log(f"USE_CPU_OFFLOAD       : {USE_CPU_OFFLOAD}")

log_system_stats("BEFORE TRANSFORMER LOAD")

# ============================================================
# SAFE TRANSFORMER INSPECTION
# ============================================================
def inspect_transformer(model, name):
    log(f"\nπŸ” Inspecting {name}")
    try:
        candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
        blocks = None

        for attr in candidates:
            if hasattr(model, attr):
                blocks = getattr(model, attr)
                break

        if blocks is None:
            log(f"⚠️ No block structure found in {name}")
            return

        if hasattr(blocks, "__len__"):
            log(f"Total Blocks = {len(blocks)}")
        else:
            log("⚠️ Blocks exist but are not iterable")

        for i in range(min(10, len(blocks) if hasattr(blocks, "__len__") else 0)):
            log(f"Block {i} = {blocks[i].__class__.__name__}")

    except Exception as e:
        log(f"⚠️ Transformer inspect error: {e}")


# ============================================================
# LOAD TRANSFORMER β€” WITH LIVE STATS
# ============================================================
log("\n===================================================")
log("πŸ”§ LOADING TRANSFORMER BLOCK")
log("===================================================")

log("πŸ“Œ Logging memory before load:")
log_system_stats("START TRANSFORMER LOAD")

try:
    quant_cfg = DiffusersBitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch_dtype,
        bnb_4bit_use_double_quant=True,
    )

    transformer = AutoModel.from_pretrained(
        model_id,
        cache_dir=model_cache,
        subfolder="transformer",
        quantization_config=quant_cfg,
        torch_dtype=torch_dtype,
        device_map=device,
    )
    log("βœ… Transformer loaded successfully.")

except Exception as e:
    log(f"❌ Transformer load failed: {e}")
    transformer = None

log_system_stats("AFTER TRANSFORMER LOAD")

if transformer:
    inspect_transformer(transformer, "Transformer")


# ============================================================
# LOAD TEXT ENCODER
# ============================================================
log("\n===================================================")
log("πŸ”§ LOADING TEXT ENCODER")
log("===================================================")

log_system_stats("START TEXT ENCODER LOAD")

try:
    quant_cfg2 = TransformersBitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch_dtype,
        bnb_4bit_use_double_quant=True,
    )

    text_encoder = AutoModel.from_pretrained(
        model_id,
        cache_dir=model_cache,
        subfolder="text_encoder",
        quantization_config=quant_cfg2,
        torch_dtype=torch_dtype,
        device_map=device,
    )
    log("βœ… Text encoder loaded successfully.")

except Exception as e:
    log(f"❌ Text encoder load failed: {e}")
    text_encoder = None

log_system_stats("AFTER TEXT ENCODER LOAD")

if text_encoder:
    inspect_transformer(text_encoder, "Text Encoder")


# ============================================================
# BUILD PIPELINE
# ============================================================
log("\n===================================================")
log("πŸ”§ BUILDING PIPELINE")
log("===================================================")

log_system_stats("START PIPELINE BUILD")

try:
    pipe = ZImagePipeline.from_pretrained(
        model_id,
        transformer=transformer,
        text_encoder=text_encoder,
        torch_dtype=torch_dtype,
    )
    pipe.to(device)
    log("βœ… Pipeline built successfully.")

except Exception as e:
    log(f"❌ Pipeline build failed: {e}")
    pipe = None

log_system_stats("AFTER PIPELINE BUILD")


# ============================================================
# INFERENCE
# ============================================================
@spaces.GPU
def generate_image(prompt, height, width, steps, seed):
    global LOGS
    LOGS = ""  # reset logs

    log("===================================================")
    log("🎨 RUNNING INFERENCE")
    log("===================================================")
    log_system_stats("BEFORE INFERENCE")

    try:
        generator = torch.Generator(device).manual_seed(seed)

        output = pipe(
            prompt=prompt,
            height=height,
            width=width,
            num_inference_steps=steps,
            guidance_scale=0.0,
            generator=generator,
        )

        log("βœ… Inference finished.")
        log_system_stats("AFTER INFERENCE")

        return output.images[0], LOGS

    except Exception as e:
        log(f"❌ Inference error: {e}")
        return None, LOGS


# ============================================================
# UI
# ============================================================
with gr.Blocks(title="Z-Image Turbo Debugger") as demo:
    gr.Markdown("## **Z-Image Turbo β€” Full Debug + Live GPU/CPU Monitor**")

    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Textbox(label="Prompt", value="Realistic male portrait")
            height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
            width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
            steps = gr.Slider(1, 16, value=9, step=1, label="Steps")
            seed = gr.Slider(0, 999999, value=42, step=1, label="Seed")
            btn = gr.Button("Generate")

        with gr.Column(scale=1):
            image_out = gr.Image(label="Output")
            logs_panel = gr.Textbox(label="πŸ“œ Logs", lines=30)

    btn.click(generate_image,
              inputs=[prompt, height, width, steps, seed],
              outputs=[image_out, logs_panel])

demo.launch()