prediff_code / models /diffusion /latent_diffusion.py
weatherforecast1024's picture
Upload folder using huggingface_hub
7667a87 verified
"""
Code is adapted from https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py
"""
import warnings
from typing import Sequence, Union, Dict, Any, Optional, Callable
from copy import deepcopy
from contextlib import contextmanager
from functools import partial
from tqdm import tqdm
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
import lightning.pytorch as pl
from lightning.pytorch.utilities.rank_zero import rank_zero_only
from diffusers.models.autoencoder_kl import AutoencoderKLOutput, DecoderOutput
from .utils import make_beta_schedule, extract_into_tensor, noise_like, default
from models.model_utils.distributions import DiagonalGaussianDistribution
from utils.ema import LitEma
from utils.layout import parse_layout_shape
from utils.optim import disabled_train
class LatentDiffusion(pl.LightningModule):
def __init__(self,
torch_nn_module: nn.Module,
layout: str = "NTHWC",
data_shape: Sequence[int] = (10, 128, 128, 4),
timesteps=1000,
beta_schedule="linear",
loss_type="l2",
monitor="val/loss",
use_ema=True,
log_every_t=100,
clip_denoised=False,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
given_betas=None,
original_elbo_weight=0.,
v_posterior=0.,
l_simple_weight=1.,
parameterization="eps",
learn_logvar=False,
logvar_init=0.,
# latent diffusion
latent_shape: Sequence[int] = (10, 16, 16, 4),
first_stage_model: nn.Module = None,
cond_stage_model: Union[str, nn.Module] = None,
num_timesteps_cond=None,
cond_stage_trainable=False,
cond_stage_forward=None,
scale_by_std=False,
scale_factor=1.0,
):
r"""
Parameters
----------
torch_nn_module: nn.Module
The `.forward()` method of model should have the following signature:
`x_hat = model.forward(x, t, *args, **kwargs)`
layout: str
e.g., "NTHWC", "NHWC".
data_shape: Sequence[int]
The shape of each data entry. Corresponds to `layout` without the batch axis "N".
timesteps: int
1000 by default.
beta_schedule: str
one of ["linear", "cosine", "sqrt_linear", "sqrt"].
loss_type: str
one of ["l2", "l1"].
monitor: str
name of logged var for selecting best val model.
use_ema: bool
log_every_t: int
log intermediate denoising steps. Should be <= `timesteps`.
clip_denoised: bool
linear_start: float
linear_end: float
cosine_s: float
given_betas: Optional
If provided, `linear_start`, `linear_end`, `cosine_s` take no effect.
If None, `linear_start`, `linear_end`, `cosine_s` are used to generate betas via `make_beta_schedule()`.
original_elbo_weight: float
0. by default
v_posterior: float
0. by default
weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
l_simple_weight: float
1. by default
parameterization: str
"eps" by default, to predict the noise from `t` to `t-1`.
"x0" to predict the `x_{t-1}` from `x_t`.
all assuming fixed variance schedules.
learn_logvar: bool
use fixed var by default.
logvar_init: float
(initial) values of `logvar`.
latent_shape: Sequence[int]
The shape of downsampled data entry. Corresponds to `layout` without the batch axis "N".
first_stage_model: nn.Module
nn.Module : a model that has method ".encode()" to encode the inputs.
cond_stage_model: str or nn.Module
"__is_first_stage__": use the first_stage_model also for encoding conditionings.
nn.Module : a model that has method ".encode()" or use `self()` to encodes the conditionings.
cond_stage_trainable: bool
Whether to train the cond_stage_model jointly
num_timesteps_cond: int
cond_stage_forward: str
The name of the forward method of the cond_stage_model.
scale_by_std
scale_factor
"""
super(LatentDiffusion, self).__init__()
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
self.parameterization = parameterization
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
self.clip_denoised = clip_denoised
self.log_every_t = log_every_t
self.torch_nn_module = torch_nn_module
self.layout = layout
self.data_shape = data_shape
self.parse_layout_shape(layout=layout)
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.torch_nn_module)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
if monitor is not None:
self.monitor = monitor
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
self.loss_type = loss_type
self.learn_logvar = learn_logvar
logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
if self.learn_logvar:
self.logvar = nn.Parameter(logvar, requires_grad=True)
else:
self.register_buffer('logvar', logvar)
self.latent_shape = latent_shape
self.num_timesteps_cond = default(num_timesteps_cond, 1)
assert self.num_timesteps_cond <= timesteps
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
self.cond_stage_trainable = cond_stage_trainable
self.scale_by_std = scale_by_std
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer('scale_factor', torch.tensor(scale_factor))
self.instantiate_first_stage(first_stage_model)
self.instantiate_cond_stage(cond_stage_model, cond_stage_forward)
def set_alignment(self, alignment_fn: Callable = None):
r"""
Call this method to set alignment after __init__ of LatentDiffusion,
to avoid error "cannot assign module before Module.__init__() call"
when assigning alignment model to the LatentDiffusion before its __init__.
Parameters
----------
alignment_fn: Callable
Should have signature `alignment_fn(zt, t, zc=None, y=None, xt=None, **kwargs)`.
"""
self.alignment_fn = alignment_fn
def parse_layout_shape(self, layout):
parsed_dict = parse_layout_shape(layout=layout)
self.batch_axis = parsed_dict["batch_axis"]
self.t_axis = parsed_dict["t_axis"]
self.h_axis = parsed_dict["h_axis"]
self.w_axis = parsed_dict["w_axis"]
self.c_axis = parsed_dict["c_axis"]
self.all_slice = [slice(None, None), ] * len(layout)
def extract_into_tensor(self, a, t, x_shape):
return extract_into_tensor(a=a, t=t, x_shape=x_shape,
batch_axis=self.batch_axis)
@property
def loss_mean_dim(self):
# mean over all dims except for batch_axis.
if not hasattr(self, "_loss_mean_dim"):
_loss_mean_dim = list(range(len(self.layout)))
_loss_mean_dim.pop(self.batch_axis)
self._loss_mean_dim = tuple(_loss_mean_dim)
return self._loss_mean_dim
def get_batch_data_shape(self, batch_size=1):
if not hasattr(self, "batch_data_shape"): # `self.batch_data_shape` not set
_batch_data_shape = deepcopy(list(self.data_shape))
_batch_data_shape.insert(self.batch_axis, batch_size)
elif self.batch_data_shape[self.batch_axis] != batch_size: # `batch_size` is changed
_batch_data_shape = deepcopy(list(self.batch_data_shape))
_batch_data_shape[self.batch_axis] = batch_size
else:
return self.batch_data_shape
self.batch_data_shape = tuple(_batch_data_shape)
return self.batch_data_shape
def get_batch_latent_shape(self, batch_size=1):
if not hasattr(self, "batch_latent_shape"): # `self.batch_latent_shape` not set
_batch_latent_shape = deepcopy(list(self.latent_shape))
_batch_latent_shape.insert(self.batch_axis, batch_size)
elif self.batch_latent_shape[self.batch_axis] != batch_size: # `batch_size` is changed
_batch_latent_shape = deepcopy(list(self.batch_latent_shape))
_batch_latent_shape[self.batch_axis] = batch_size
else:
return self.batch_latent_shape
self.batch_latent_shape = tuple(_batch_latent_shape)
return self.batch_latent_shape
def register_schedule(self,
given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if given_betas is not None:
betas = given_betas
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
if self.parameterization == "eps":
lvlb_weights = self.betas ** 2 / (2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
elif self.parameterization == "x0":
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
else:
raise NotImplementedError("mu not supported")
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.torch_nn_module.parameters())
self.model_ema.copy_to(self.torch_nn_module)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.torch_nn_module.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def make_cond_schedule(self, ):
cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
cond_ids[:self.num_timesteps_cond] = ids
self.register_buffer('cond_ids', cond_ids)
@rank_zero_only
@torch.no_grad()
def on_train_batch_start(self, batch, batch_idx):
# only for very first batch
# TODO: restarted_from_ckpt not configured
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
# set rescale weight to 1./std of encodings
print("### USING STD-RESCALING ###")
x, _ = self.get_input(batch)
x = x.to(self.device)
x = rearrange(x, f"{self.einops_layout} -> {self.einops_spatial_layout}")
z = self.encode_first_stage(x)
del self.scale_factor
self.register_buffer('scale_factor', 1. / z.flatten().std())
print(f"setting self.scale_factor to {self.scale_factor}")
print("### USING STD-RESCALING ###")
def instantiate_first_stage(self, first_stage_model):
if isinstance(first_stage_model, nn.Module):
model = first_stage_model
else:
assert first_stage_model is None
raise NotImplementedError("No default first_stage_model supported yet!")
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def instantiate_cond_stage(self, cond_stage_model, cond_stage_forward):
if cond_stage_model is None:
self.cond_stage_model = None
self.cond_stage_forward = None
return
is_first_stage_flag = cond_stage_model == "__is_first_stage__"
if cond_stage_model == "__is_first_stage__":
model = self.first_stage_model
if self.cond_stage_trainable:
warnings.warn("`cond_stage_trainable` is True while `cond_stage_model` is '__is_first_stage__'. "
"force `cond_stage_trainable` to be False")
self.cond_stage_trainable = False
elif isinstance(cond_stage_model, nn.Module):
model = cond_stage_model
else:
raise NotImplementedError
self.cond_stage_model = model
if (self.cond_stage_model is not None) and (not self.cond_stage_trainable):
for param in self.cond_stage_model.parameters():
param.requires_grad = False
if cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
cond_stage_forward = self.cond_stage_model.encode
else:
cond_stage_forward = self.cond_stage_model.__call__
else:
assert hasattr(self.cond_stage_model, cond_stage_forward)
cond_stage_forward = getattr(self.cond_stage_model, cond_stage_forward)
def wrapper(cond_stage_forward: Callable, is_first_stage_flag=False):
def func(c: Dict[str, Any]):
if is_first_stage_flag:
# in this case, `cond_stage_model` is equivalent to `self.first_stage_model`,
# which takes `torch.Tensor` instead of `Dict` as input.
c = c.get("y") # get the conditioning tensor
batch_size = c.shape[self.batch_axis]
c = rearrange(c, f"{self.einops_layout} -> {self.einops_spatial_layout}")
c = cond_stage_forward(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
elif isinstance(c, AutoencoderKLOutput):
c = c.latent_dist.mode()
else:
pass
if is_first_stage_flag:
c = rearrange(c, f"{self.einops_spatial_layout} -> {self.einops_layout}", N=batch_size)
return c
return func
self.cond_stage_forward = wrapper(cond_stage_forward, is_first_stage_flag)
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
elif isinstance(encoder_posterior, AutoencoderKLOutput):
z = encoder_posterior.latent_dist.sample()
else:
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
return self.scale_factor * z
@property
def einops_layout(self):
return " ".join(self.layout)
@property
def einops_spatial_layout(self):
if not hasattr(self, "_einops_spatial_layout"):
assert len(self.layout) == 4 or len(self.layout) == 5
self._einops_spatial_layout = "(N T) C H W" if self.layout.find("T") else "N C H W"
return self._einops_spatial_layout
@torch.no_grad()
def get_input(self, batch, **kwargs):
r"""
dataset dependent
re-implement it for each specific dataset
Parameters
----------
batch: Any
raw data batch from specific dataloader
Returns
-------
out: Sequence[torch.Tensor, Dict[str, Any]]
out[0] should be a torch.Tensor which is the target to generate
out[1] should be a dict consists of several key-value pairs for conditioning
"""
return batch
@torch.no_grad()
def decode_first_stage(self, z):
z = 1. / self.scale_factor * z
batch_size = z.shape[self.batch_axis]
z = rearrange(z, f"{self.einops_layout} -> {self.einops_spatial_layout}")
output = self.first_stage_model.decode(z)
if isinstance(output, DecoderOutput):
output = output.sample
output = rearrange(output, f"{self.einops_spatial_layout} -> {self.einops_layout}", N=batch_size)
return output
@torch.no_grad()
def encode_first_stage(self, x):
encoder_posterior = self.first_stage_model.encode(x)
output = self.get_first_stage_encoding(encoder_posterior).detach()
return output
def apply_model(self, x_noisy, t, cond):
x_recon = self.torch_nn_module(x_noisy, t, cond)
if isinstance(x_recon, tuple):
return x_recon[0]
else:
return x_recon
def forward(self, batch, verbose=False):
x, c = self.get_input(batch) # torch.Tensor, Dict[str, Any]
if verbose:
print("inputs:")
print(f"x.shape = {x.shape}")
for key, val in c.items():
if hasattr(val, "shape"):
print(f"{key}.shape = {val.shape}")
batch_size = x.shape[self.batch_axis]
x = x.to(self.device)
x = rearrange(x, f"{self.einops_layout} -> {self.einops_spatial_layout}")
z = self.encode_first_stage(x)
if verbose:
print("after first stage:")
print(f"z.shape = {z.shape}")
# xrec = self.decode_first_stage(z)
z = rearrange(z, f"{self.einops_spatial_layout} -> {self.einops_layout}", N=batch_size)
t = torch.randint(0, self.num_timesteps, (batch_size,), device=self.device).long()
if self.cond_stage_model is not None:
assert c is not None
zc = self.cond_stage_forward(c)
if self.shorten_cond_schedule: # TODO: drop this option
tc = self.cond_ids[t]
zc = self.q_sample(x_start=zc, t=tc, noise=torch.randn_like(c.float()))
if verbose and hasattr(zc, "shape"):
print(f"zc.shape = {zc.shape}")
else:
zc = c if isinstance(c, torch.Tensor) else c.get("y", None)
return self.p_losses(z, zc, t, noise=None)
def training_step(self, batch, batch_idx):
loss, loss_dict = self(batch)
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
return loss
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.torch_nn_module)
@torch.no_grad()
def validation_step(self, batch, batch_idx):
_, loss_dict_no_ema = self(batch)
with self.ema_scope():
_, loss_dict_ema = self(batch)
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (self.extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
self.extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
def get_loss(self, pred, target, mean=True):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def p_losses(self, x_start, cond, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond)
loss_dict = {}
prefix = 'train' if self.training else 'val'
# TODO: add v-prediction
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
loss_simple = self.get_loss(model_output, target, mean=False).mean(dim=self.loss_mean_dim)
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
logvar_t = self.logvar[t]
loss = loss_simple / torch.exp(logvar_t) + logvar_t
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
if self.learn_logvar:
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
loss_dict.update({'logvar': self.logvar.data.mean()})
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=self.loss_mean_dim)
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
loss += (self.original_elbo_weight * loss_vlb)
loss_dict.update({f'{prefix}/loss': loss})
return loss, loss_dict
def predict_start_from_noise(self, x_t, t, noise):
return (
self.extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
self.extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
self.extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
self.extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = self.extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = self.extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, zt, zc, t, clip_denoised: bool,
return_x0=False, score_corrector=None, corrector_kwargs=None):
t_in = t
model_out = self.apply_model(zt, t_in, zc)
if score_corrector is not None:
assert self.parameterization == "eps"
model_out = score_corrector.modify_score(self, model_out, zt, t, zc, **corrector_kwargs)
if self.parameterization == "eps":
z_recon = self.predict_start_from_noise(zt, t=t, noise=model_out)
elif self.parameterization == "x0":
z_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
z_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=z_recon, x_t=zt, t=t)
if return_x0:
return model_mean, posterior_variance, posterior_log_variance, z_recon
else:
return model_mean, posterior_variance, posterior_log_variance
def aligned_mean(self, zt, t, zc, y,
orig_mean, orig_log_var, **kwargs):
align_gradient = self.alignment_fn(zt, t, zc=zc, y=y, **kwargs)
new_mean = orig_mean - (0.5 * orig_log_var).exp() * align_gradient
return new_mean
@torch.no_grad()
def p_sample(self, zt, zc, t, y=None, use_alignment=False, alignment_kwargs=None,
clip_denoised=False, return_x0=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
batch_size = zt.shape[self.batch_axis]
device = zt.device
outputs = self.p_mean_variance(zt=zt, zc=zc, t=t, clip_denoised=clip_denoised,
return_x0=return_x0,
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
if use_alignment:
if alignment_kwargs is None:
alignment_kwargs = {}
model_mean, posterior_variance, model_log_variance, *_ = outputs
model_mean = self.aligned_mean(zt=zt, t=t, zc=zc, y=y,
orig_mean=model_mean, orig_log_var=model_log_variance,
**alignment_kwargs)
outputs = (model_mean, posterior_variance, model_log_variance, *outputs[3:])
if return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(zt.shape, device) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# no noise when t == 0
nonzero_mask_shape = [1, ] * len(zt.shape)
nonzero_mask_shape[self.batch_axis] = batch_size
nonzero_mask = (1 - (t == 0).float()).reshape(*nonzero_mask_shape)
if return_x0:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
else:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, cond, shape, y=None,
use_alignment=False, alignment_kwargs=None,
return_intermediates=False, x_T=None,
verbose=False, callback=None, timesteps=None,
mask=None, x0=None, img_callback=None, start_T=None,
log_every_t=None):
if not log_every_t:
log_every_t = self.log_every_t
device = self.betas.device
batch_size = shape[self.batch_axis]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
intermediates = [img]
if timesteps is None:
timesteps = self.num_timesteps
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) \
if verbose else reversed(range(0, timesteps))
if mask is not None:
assert x0 is not None
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
for i in iterator:
ts = torch.full((batch_size,), i, device=device, dtype=torch.long)
if self.shorten_cond_schedule:
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img = self.p_sample(zt=img, zc=cond, t=ts, y=y,
use_alignment=use_alignment,
alignment_kwargs=alignment_kwargs,
clip_denoised=self.clip_denoised, )
if mask is not None:
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback: callback(i)
if img_callback: img_callback(img, i)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, cond, batch_size=16,
use_alignment=False, alignment_kwargs=None,
return_intermediates=False, x_T=None,
verbose=False, timesteps=None,
mask=None, x0=None, shape=None, return_decoded=True, **kwargs):
if use_alignment:
assert self.alignment_fn is not None, "Alignment function not set."
if shape is None:
shape = self.get_batch_latent_shape(batch_size=batch_size)
if self.cond_stage_model is not None:
assert cond is not None
cond_tensor_slice = [slice(None, None), ] * len(self.data_shape)
cond_tensor_slice[self.batch_axis] = slice(0, batch_size)
if isinstance(cond, dict):
zc = {key: cond[key][cond_tensor_slice] if not isinstance(cond[key], list) else
list(map(lambda x: x[cond_tensor_slice], cond[key])) for key in cond}
else:
zc = [c[cond_tensor_slice] for c in cond] if isinstance(cond, list) else cond[cond_tensor_slice]
zc = self.cond_stage_forward(zc)
else:
zc = cond if isinstance(cond, torch.Tensor) else cond.get("y", None)
y = cond if isinstance(cond, torch.Tensor) else cond.get("y", None)
output = self.p_sample_loop(
cond=zc, shape=shape, y=y,
use_alignment=use_alignment, alignment_kwargs=alignment_kwargs,
return_intermediates=return_intermediates, x_T=x_T,
verbose=verbose, timesteps=timesteps,
mask=mask, x0=x0)
if return_decoded:
if return_intermediates:
samples, intermediates = output
decoded_samples = self.decode_first_stage(samples)
decoded_intermediates = [self.decode_first_stage(ele) for ele in intermediates]
output = [decoded_samples, decoded_intermediates]
else:
output = self.decode_first_stage(output)
return output
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.torch_nn_module.parameters())
if self.cond_stage_trainable:
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
params = params + list(self.cond_stage_model.parameters())
if self.learn_logvar:
print('Diffusion model optimizing logvar')
params.append(self.logvar)
opt = torch.optim.AdamW(params, lr=lr)
return opt