|
|
from typing import Optional |
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from .unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block |
|
|
|
|
|
|
|
|
class Encoder(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels=3, |
|
|
out_channels=3, |
|
|
down_block_types=("DownEncoderBlock2D",), |
|
|
block_out_channels=(64,), |
|
|
layers_per_block=2, |
|
|
norm_num_groups=32, |
|
|
act_fn="silu", |
|
|
double_z=True, |
|
|
): |
|
|
super().__init__() |
|
|
self.layers_per_block = layers_per_block |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.mid_block = None |
|
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
|
|
|
|
|
output_channel = block_out_channels[0] |
|
|
for i, down_block_type in enumerate(down_block_types): |
|
|
input_channel = output_channel |
|
|
output_channel = block_out_channels[i] |
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
|
|
down_block = get_down_block( |
|
|
down_block_type, |
|
|
num_layers=self.layers_per_block, |
|
|
in_channels=input_channel, |
|
|
out_channels=output_channel, |
|
|
add_downsample=not is_final_block, |
|
|
resnet_eps=1e-6, |
|
|
downsample_padding=0, |
|
|
resnet_act_fn=act_fn, |
|
|
resnet_groups=norm_num_groups, |
|
|
attn_num_head_channels=None, |
|
|
temb_channels=None, |
|
|
) |
|
|
self.down_blocks.append(down_block) |
|
|
|
|
|
|
|
|
self.mid_block = UNetMidBlock2D( |
|
|
in_channels=block_out_channels[-1], |
|
|
resnet_eps=1e-6, |
|
|
resnet_act_fn=act_fn, |
|
|
output_scale_factor=1, |
|
|
resnet_time_scale_shift="default", |
|
|
attn_num_head_channels=None, |
|
|
resnet_groups=norm_num_groups, |
|
|
temb_channels=None, |
|
|
) |
|
|
|
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) |
|
|
self.conv_act = nn.SiLU() |
|
|
|
|
|
conv_out_channels = 2 * out_channels if double_z else out_channels |
|
|
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) |
|
|
|
|
|
def forward(self, x): |
|
|
sample = x |
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
|
|
|
for down_block in self.down_blocks: |
|
|
sample = down_block(sample) |
|
|
|
|
|
|
|
|
sample = self.mid_block(sample) |
|
|
|
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
|
sample = self.conv_act(sample) |
|
|
sample = self.conv_out(sample) |
|
|
|
|
|
return sample |
|
|
|
|
|
|
|
|
class Decoder(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels=3, |
|
|
out_channels=3, |
|
|
up_block_types=("UpDecoderBlock2D",), |
|
|
block_out_channels=(64,), |
|
|
layers_per_block=2, |
|
|
norm_num_groups=32, |
|
|
act_fn="silu", |
|
|
): |
|
|
super().__init__() |
|
|
self.layers_per_block = layers_per_block |
|
|
|
|
|
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.mid_block = None |
|
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
|
|
|
|
|
self.mid_block = UNetMidBlock2D( |
|
|
in_channels=block_out_channels[-1], |
|
|
resnet_eps=1e-6, |
|
|
resnet_act_fn=act_fn, |
|
|
output_scale_factor=1, |
|
|
resnet_time_scale_shift="default", |
|
|
attn_num_head_channels=None, |
|
|
resnet_groups=norm_num_groups, |
|
|
temb_channels=None, |
|
|
) |
|
|
|
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
|
output_channel = reversed_block_out_channels[0] |
|
|
for i, up_block_type in enumerate(up_block_types): |
|
|
prev_output_channel = output_channel |
|
|
output_channel = reversed_block_out_channels[i] |
|
|
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
|
|
up_block = get_up_block( |
|
|
up_block_type, |
|
|
num_layers=self.layers_per_block + 1, |
|
|
in_channels=prev_output_channel, |
|
|
out_channels=output_channel, |
|
|
prev_output_channel=None, |
|
|
add_upsample=not is_final_block, |
|
|
resnet_eps=1e-6, |
|
|
resnet_act_fn=act_fn, |
|
|
resnet_groups=norm_num_groups, |
|
|
attn_num_head_channels=None, |
|
|
temb_channels=None, |
|
|
) |
|
|
self.up_blocks.append(up_block) |
|
|
prev_output_channel = output_channel |
|
|
|
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) |
|
|
self.conv_act = nn.SiLU() |
|
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) |
|
|
|
|
|
def forward(self, z): |
|
|
sample = z |
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
|
|
|
sample = self.mid_block(sample) |
|
|
|
|
|
|
|
|
for up_block in self.up_blocks: |
|
|
sample = up_block(sample) |
|
|
|
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
|
sample = self.conv_act(sample) |
|
|
sample = self.conv_out(sample) |
|
|
|
|
|
return sample |
|
|
|