prediff_code / scripts /train_alignment /alignment_lightning_module.py
weatherforecast1024's picture
Upload folder using huggingface_hub
7667a87 verified
import torch
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, SequentialLR
from lightning.pytorch.profilers import PyTorchProfiler
from lightning.pytorch.callbacks import (
Callback, LearningRateMonitor, DeviceStatsMonitor,
EarlyStopping, ModelCheckpoint,
)
from lightning.pytorch import Trainer, loggers as pl_loggers
from lightning.pytorch.strategies import DDPStrategy
from lightning.pytorch.utilities import grad_norm
import torchmetrics
import numpy as np
from omegaconf import OmegaConf
import os
import warnings
from shutil import copyfile
import inspect
from models.knowledge_alignment import AlignmentPL,SEVIRAvgIntensityAlignment
from models.vae import AutoencoderKL
from datamodule import SEVIRLightningDataModule
from utils.path import default_pretrained_vae_dir,default_exps_dir
from utils.optim import warmup_lambda
from utils.layout import step_layout_to_in_out_slice
class SEVIRAlignmentPLModule(AlignmentPL):
def __init__(
self,
total_num_steps: int,
oc_file: str = None,
save_dir: str = None
):
self.total_num_steps = total_num_steps
oc_from_file = OmegaConf.load(open(oc_file, "r")) if oc_file is not None else oc_file
oc = self.get_base_config(oc_from_file=oc_from_file)
self.save_hyperparameters(oc)
self.oc = oc
knowledge_alignment_cfg = OmegaConf.to_object(oc.model.align)
self.alignment_obj = SEVIRAvgIntensityAlignment(
alignment_type=knowledge_alignment_cfg["alignment_type"],
model_type=knowledge_alignment_cfg["model_type"],
model_args=knowledge_alignment_cfg["model_args"]
)
vae_cfg = OmegaConf.to_object(oc.model.vae)
first_stage_model = AutoencoderKL(
down_block_types=vae_cfg["down_block_types"],
in_channels=vae_cfg["in_channels"],
block_out_channels=vae_cfg["block_out_channels"],
act_fn=vae_cfg["act_fn"],
latent_channels=vae_cfg["latent_channels"],
up_block_types=vae_cfg["up_block_types"],
norm_num_groups=vae_cfg["norm_num_groups"],
layers_per_block=vae_cfg["layers_per_block"],
out_channels=vae_cfg["out_channels"]
)
pretrained_ckpt_path = vae_cfg["pretrained_ckpt_path"]
if pretrained_ckpt_path is not None:
state_dict = torch.load(
os.path.join(default_pretrained_vae_dir, vae_cfg["pretrained_ckpt_path"]),
map_location=torch.device("cpu")
)
first_stage_model.load_state_dict(state_dict=state_dict)
else:
warnings.warn(f"Pretrained weights for `AutoencoderKL` not set. Run for sanity check only.")
diffusion_cfg = OmegaConf.to_object(oc.model.diffusion)
super(SEVIRAlignmentPLModule, self).__init__(
torch_nn_module=self.alignment_obj.model,
target_fn=self.alignment_obj.model_objective,
layout=oc.layout.layout,
timesteps=diffusion_cfg["timesteps"],
beta_schedule=diffusion_cfg["beta_schedule"],
loss_type=self.oc.optim.loss_type,
monitor=self.oc.optim.monitor,
linear_start=diffusion_cfg["linear_start"],
linear_end=diffusion_cfg["linear_end"],
cosine_s=diffusion_cfg["cosine_s"],
given_betas=diffusion_cfg["given_betas"],
# latent diffusion
first_stage_model=first_stage_model,
cond_stage_model=diffusion_cfg["cond_stage_model"],
num_timesteps_cond=diffusion_cfg["num_timesteps_cond"],
cond_stage_trainable=diffusion_cfg["cond_stage_trainable"],
cond_stage_forward=diffusion_cfg["cond_stage_forward"],
scale_by_std=diffusion_cfg["scale_by_std"],
scale_factor=diffusion_cfg["scale_factor"],)
# lr_scheduler
self.total_num_steps = total_num_steps
# logging
self.save_dir = save_dir
self.logging_prefix = oc.logging.logging_prefix
self.valid_mse = torchmetrics.MeanSquaredError()
self.valid_mae = torchmetrics.MeanAbsoluteError()
self.test_mse = torchmetrics.MeanSquaredError()
self.test_mae = torchmetrics.MeanAbsoluteError()
self.configure_save(cfg_file_path=oc_file)
def configure_save(self, cfg_file_path=None):
self.save_dir = os.path.join(default_exps_dir, self.save_dir)
os.makedirs(self.save_dir, exist_ok=True)
if cfg_file_path is not None:
cfg_file_target_path = os.path.join(self.save_dir, "cfg.yaml")
if (not os.path.exists(cfg_file_target_path)) or \
(not os.path.samefile(cfg_file_path, cfg_file_target_path)):
copyfile(cfg_file_path, cfg_file_target_path)
self.example_save_dir = os.path.join(self.save_dir, "examples")
os.makedirs(self.example_save_dir, exist_ok=True)
# region Get Default Config
def get_base_config(self, oc_from_file=None):
oc = OmegaConf.create()
oc.layout = self.get_layout_config()
oc.optim = self.get_optim_config()
oc.logging = self.get_logging_config()
oc.trainer = self.get_trainer_config()
oc.eval = self.get_eval_config()
oc.model = self.get_model_config()
oc.dataset = self.get_dataset_config()
if oc_from_file is not None:
# oc = apply_omegaconf_overrides(oc, oc_from_file)
oc = OmegaConf.merge(oc, oc_from_file)
return oc
@staticmethod
def get_layout_config():
cfg = OmegaConf.create()
cfg.in_len = 7
cfg.out_len = 6
cfg.in_step=1
cfg.out_step=1
cfg.in_out_diff=1
cfg.img_height = 128
cfg.img_width = 128
cfg.data_channels = 4
cfg.layout = "NTHWC"
return cfg
@staticmethod
def get_model_config():
cfg = OmegaConf.create()
layout_cfg = SEVIRAlignmentPLModule.get_layout_config()
cfg.diffusion = OmegaConf.create()
cfg.diffusion.timesteps = 1000
cfg.diffusion.beta_schedule = "linear"
cfg.diffusion.linear_start = 1e-4
cfg.diffusion.linear_end = 2e-2
cfg.diffusion.cosine_s = 8e-3
cfg.diffusion.given_betas = None
# latent diffusion
cfg.diffusion.cond_stage_model = "__is_first_stage__"
cfg.diffusion.num_timesteps_cond = None
cfg.diffusion.cond_stage_trainable = False
cfg.diffusion.cond_stage_forward = None
cfg.diffusion.scale_by_std = False
cfg.diffusion.scale_factor = 1.0
cfg.align = OmegaConf.create()
cfg.align.alignment_type = "avg_x"
cfg.align.model_type = "cuboid"
cfg.align.model_args = OmegaConf.create()
cfg.align.model_args.input_shape = [6, 16, 16, 4]
cfg.align.model_args.out_channels = 2
cfg.align.model_args.base_units = 16
cfg.align.model_args.block_units = None
cfg.align.model_args.scale_alpha = 1.0
cfg.align.model_args.depth = [1, 1]
cfg.align.model_args.downsample = 2
cfg.align.model_args.downsample_type = "patch_merge"
cfg.align.model_args.block_attn_patterns = "axial"
cfg.align.model_args.num_heads = 4
cfg.align.model_args.attn_drop = 0.0
cfg.align.model_args.proj_drop = 0.0
cfg.align.model_args.ffn_drop = 0.0
cfg.align.model_args.ffn_activation = "gelu"
cfg.align.model_args.gated_ffn = False
cfg.align.model_args.norm_layer = "layer_norm"
cfg.align.model_args.use_inter_ffn = True
cfg.align.model_args.hierarchical_pos_embed = False
cfg.align.model_args.pos_embed_type = 't+h+w'
cfg.align.model_args.padding_type = "zero"
cfg.align.model_args.checkpoint_level = 0
cfg.align.model_args.use_relative_pos = True
cfg.align.model_args.self_attn_use_final_proj = True
# global vectors
cfg.align.model_args.num_global_vectors = 0
cfg.align.model_args.use_global_vector_ffn = True
cfg.align.model_args.use_global_self_attn = False
cfg.align.model_args.separate_global_qkv = False
cfg.align.model_args.global_dim_ratio = 1
# initialization
cfg.align.model_args.attn_linear_init_mode = "0"
cfg.align.model_args.ffn_linear_init_mode = "0"
cfg.align.model_args.ffn2_linear_init_mode = "2"
cfg.align.model_args.attn_proj_linear_init_mode = "2"
cfg.align.model_args.conv_init_mode = "0"
cfg.align.model_args.down_linear_init_mode = "0"
cfg.align.model_args.global_proj_linear_init_mode = "2"
cfg.align.model_args.norm_init_mode = "0"
# timestep embedding for diffusion
cfg.align.model_args.time_embed_channels_mult = 4
cfg.align.model_args.time_embed_use_scale_shift_norm = False
cfg.align.model_args.time_embed_dropout = 0.0
# readout
cfg.align.model_args.pool = "attention"
cfg.align.model_args.readout_seq = True
cfg.align.model_args.out_len = 6
cfg.vae = OmegaConf.create()
cfg.vae.data_channels = layout_cfg.data_channels
# from stable-diffusion-v1-5
cfg.vae.down_block_types = ['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D']
cfg.vae.in_channels = cfg.vae.data_channels
cfg.vae.block_out_channels = [128, 256, 512, 512]
cfg.vae.act_fn = 'silu'
cfg.vae.latent_channels = 4
cfg.vae.up_block_types = ['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D']
cfg.vae.norm_num_groups = 32
cfg.vae.layers_per_block = 2
cfg.vae.out_channels = cfg.vae.data_channels
return cfg
@staticmethod
def get_dataset_config():
cfg = OmegaConf.create()
cfg.dataset_name = "sevir_lr"
cfg.img_height = 128
cfg.img_width = 128
cfg.in_len = 7
cfg.out_len = 6
cfg.in_step=1
cfg.out_step=1
cfg.in_out_diff=1
cfg.seq_len = 13
cfg.plot_stride = 1
cfg.interval_real_time = 10
cfg.sample_mode = "sequent"
cfg.stride = cfg.out_len
cfg.layout = "NTHWC"
cfg.start_date = None
cfg.train_val_split_date = (2019, 1, 1)
cfg.train_test_split_date = (2019, 6, 1)
cfg.end_date = None
cfg.metrics_mode = "0"
cfg.metrics_list = ('csi', 'pod', 'sucr', 'bias')
cfg.threshold_list = (16, 74, 133, 160, 181, 219)
cfg.aug_mode = "1"
return cfg
@staticmethod
def get_optim_config():
cfg = OmegaConf.create()
cfg.seed = None
cfg.total_batch_size = 32
cfg.micro_batch_size = 8
cfg.float32_matmul_precision = "high"
cfg.method = "adamw"
cfg.lr = 1.0E-6
cfg.wd = 1.0E-2
cfg.betas = (0.9, 0.999)
cfg.gradient_clip_val = 1.0
cfg.max_epochs = 50
cfg.loss_type = "l2"
# scheduler
cfg.warmup_percentage = 0.2
cfg.lr_scheduler_mode = "cosine" # Can be strings like 'linear', 'cosine'
cfg.min_lr_ratio = 1.0E-3
cfg.warmup_min_lr_ratio = 0.0
# early stopping
cfg.monitor = "valid_loss_epoch"
cfg.early_stop = False
cfg.early_stop_mode = "min"
cfg.early_stop_patience = 5
cfg.save_top_k = 1
return cfg
@staticmethod
def get_logging_config():
cfg = OmegaConf.create()
cfg.logging_prefix = "SEVIR-LR_AvgX"
cfg.monitor_lr = True
cfg.monitor_device = False
cfg.track_grad_norm = -1
cfg.use_wandb = False
cfg.profiler = None
return cfg
@staticmethod
def get_trainer_config():
cfg = OmegaConf.create()
cfg.check_val_every_n_epoch = 1
cfg.log_step_ratio = 0.001 # Logging every 1% of the total training steps per epoch
cfg.precision = 32
cfg.find_unused_parameters = True
cfg.num_sanity_val_steps = 2
return cfg
@staticmethod
def get_eval_config():
cfg = OmegaConf.create()
cfg.train_example_data_idx_list = []
cfg.val_example_data_idx_list = []
cfg.test_example_data_idx_list = []
cfg.eval_example_only = False
cfg.num_samples_per_context = 1
cfg.save_gif = False
cfg.gif_fps = 2.0
return cfg
# endregion
# region Trainer and Optimizer Config
def configure_optimizers(self):
optim_cfg = self.oc.optim
params = list(self.torch_nn_module.parameters())
if self.cond_stage_trainable:
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
params = params + list(self.cond_stage_model.parameters())
if optim_cfg.method == "adamw":
optimizer = torch.optim.AdamW(params, lr=optim_cfg.lr, betas=optim_cfg.betas)
else:
raise NotImplementedError(f"opimization method {optim_cfg.method} not supported.")
warmup_iter = int(np.round(self.oc.optim.warmup_percentage * self.total_num_steps))
if optim_cfg.lr_scheduler_mode == 'none':
return {'optimizer': optimizer}
else:
if optim_cfg.lr_scheduler_mode == 'cosine':
warmup_scheduler = LambdaLR(optimizer,
lr_lambda=warmup_lambda(warmup_steps=warmup_iter,
min_lr_ratio=optim_cfg.warmup_min_lr_ratio))
cosine_scheduler = CosineAnnealingLR(optimizer,
T_max=(self.total_num_steps - warmup_iter),
eta_min=optim_cfg.min_lr_ratio * optim_cfg.lr)
lr_scheduler = SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_scheduler],
milestones=[warmup_iter])
lr_scheduler_config = {
'scheduler': lr_scheduler,
'interval': 'step',
'frequency': 1,
}
else:
raise NotImplementedError
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler_config}
def set_trainer_kwargs(self, **kwargs):
r"""
Default kwargs used when initializing pl.Trainer
"""
if self.oc.logging.profiler is None:
profiler = None
elif self.oc.logging.profiler == "pytorch":
profiler = PyTorchProfiler(filename=f"{self.oc.logging.logging_prefix}_PyTorchProfiler.log")
else:
raise NotImplementedError
checkpoint_callback = ModelCheckpoint(
monitor=self.oc.optim.monitor,
dirpath=os.path.join(self.save_dir, "checkpoints"),
filename="{epoch:03d}",
auto_insert_metric_name=False,
save_top_k=self.oc.optim.save_top_k,
save_last=True,
mode="min",
)
callbacks = kwargs.pop("callbacks", [])
assert isinstance(callbacks, list)
for ele in callbacks:
assert isinstance(ele, Callback)
callbacks += [checkpoint_callback, ]
if self.oc.logging.monitor_lr:
callbacks += [LearningRateMonitor(logging_interval='step'), ]
if self.oc.logging.monitor_device:
callbacks += [DeviceStatsMonitor(), ]
if self.oc.optim.early_stop:
callbacks += [EarlyStopping(monitor=self.oc.optim.monitor,
min_delta=0.0,
patience=self.oc.optim.early_stop_patience,
verbose=False,
mode=self.oc.optim.early_stop_mode), ]
logger = kwargs.pop("logger", [])
tb_logger = pl_loggers.TensorBoardLogger(save_dir=self.save_dir)
csv_logger = pl_loggers.CSVLogger(save_dir=self.save_dir)
logger += [tb_logger, csv_logger]
if self.oc.logging.use_wandb:
wandb_logger = pl_loggers.WandbLogger(
name = self.oc.logging.logging_name,
id = self.oc.logging.run_id,
project=self.oc.logging.logging_prefix,
save_dir=self.save_dir
)
logger += [wandb_logger, ]
log_every_n_steps = max(1, int(self.oc.trainer.log_step_ratio * self.total_num_steps))
trainer_init_keys = inspect.signature(Trainer).parameters.keys()
ret = dict(
callbacks=callbacks,
# log
logger=logger,
log_every_n_steps=log_every_n_steps,
profiler=profiler,
# save
default_root_dir=self.save_dir,
# ddp
accelerator="gpu",
strategy=DDPStrategy(find_unused_parameters=self.oc.trainer.find_unused_parameters),
# strategy=ApexDDPStrategy(find_unused_parameters=False, delay_allreduce=True),
# optimization
max_epochs=self.oc.optim.max_epochs,
check_val_every_n_epoch=self.oc.trainer.check_val_every_n_epoch,
gradient_clip_val=self.oc.optim.gradient_clip_val,
# NVIDIA amp
precision=self.oc.trainer.precision,
# misc
num_sanity_val_steps=self.oc.trainer.num_sanity_val_steps,
inference_mode=False,
)
oc_trainer_kwargs = OmegaConf.to_object(self.oc.trainer)
oc_trainer_kwargs = {key: val for key, val in oc_trainer_kwargs.items() if key in trainer_init_keys}
ret.update(oc_trainer_kwargs)
ret.update(kwargs)
return ret
# endregion
# region Properties Extraction and Misc Calc
@classmethod
def get_total_num_steps(
cls,
num_samples: int,
total_batch_size: int,
epoch: int = None):
r"""
Parameters
----------
num_samples: int
The number of samples of the datasets. `num_samples / micro_batch_size` is the number of steps per epoch.
total_batch_size: int
`total_batch_size == micro_batch_size * world_size * grad_accum`
"""
if epoch is None:
epoch = cls.get_optim_config().max_epochs
return int(epoch * num_samples / total_batch_size)
@staticmethod
def get_sevir_datamodule(dataset_cfg,
micro_batch_size: int = 1,
num_workers: int = 8):
dm = SEVIRLightningDataModule(
seq_len=dataset_cfg["seq_len"],
sample_mode=dataset_cfg["sample_mode"],
stride=dataset_cfg["stride"],
batch_size=micro_batch_size,
layout=dataset_cfg["layout"],
output_type=np.float32,
preprocess=True,
rescale_method="01",
verbose=False,
aug_mode=dataset_cfg["aug_mode"],
ret_contiguous=False,
# datamodule_only
dataset_name=dataset_cfg["dataset_name"],
start_date=dataset_cfg["start_date"],
train_test_split_date=dataset_cfg["train_test_split_date"],
end_date=dataset_cfg["end_date"],
val_ratio=dataset_cfg["val_ratio"],
num_workers=num_workers, )
return dm
@property
def in_slice(self):
if not hasattr(self, "_in_slice"):
in_slice, out_slice = step_layout_to_in_out_slice(
layout=self.oc.layout.layout,
in_len=self.oc.layout.in_len, in_step= self.oc.layout.in_step,
out_len=self.oc.layout.out_len, out_step = self.oc.layout.out_step,
in_out_diff= self.oc.layout.in_out_diff
)
self._in_slice = in_slice
self._out_slice = out_slice
return self._in_slice
@property
def out_slice(self):
if not hasattr(self, "_out_slice"):
in_slice, out_slice = step_layout_to_in_out_slice(
layout=self.oc.layout.layout,
in_len=self.oc.layout.in_len, in_step= self.oc.layout.in_step,
out_len=self.oc.layout.out_len, out_step = self.oc.layout.out_step,
in_out_diff= self.oc.layout.in_out_diff
)
self._in_slice = in_slice
self._out_slice = out_slice
return self._out_slice
@property
def intensity_avg_dims(self):
if not hasattr(self, "_intensity_avg_dims"):
self._intensity_avg_dims = tuple(self.oc.layout.layout.find(dim) for dim in "HWC")
return self._intensity_avg_dims
@torch.no_grad()
def get_input(self, batch, **kwargs):
r"""
dataset dependent
re-implement it for each specific dataset
Parameters
----------
batch: Any
raw data batch from specific dataloader
Returns
-------
out: Sequence[torch.Tensor, Dict[str, Any]]
out[0] should be a torch.Tensor which is the target to generate
out[1] should be a dict consists of several key-value pairs for conditioning
"""
return self._get_input_sevirlr(batch=batch, return_verbose=kwargs.get("return_verbose", False))
@torch.no_grad()
def _get_input_sevirlr(self, batch, return_verbose=False):
seq = batch
in_seq = seq[self.in_slice]
out_seq = seq[self.out_slice]
if return_verbose:
return out_seq, {"y": in_seq}, \
{"avg_x_gt": torch.mean(out_seq, dim=self.intensity_avg_dims)}
else:
return out_seq, {"y": in_seq}, {}
def on_before_optimizer_step(self, optimizer):
# Compute the 2-norm for each layer
# If using mixed precision, the gradients are already unscaled here
# reference: https://lightning.ai/docs/pytorch/2.0.9/debug/debugging_intermediate.html#look-out-for-exploding-gradients
if self.oc.logging.track_grad_norm != -1:
norms = grad_norm(self.torch_nn_module, norm_type=self.oc.logging.track_grad_norm)
self.log_dict(norms)
# endregion