|
|
from omegaconf import OmegaConf |
|
|
import os |
|
|
from shutil import copyfile |
|
|
import warnings |
|
|
from typing import Dict,Sequence,Union |
|
|
import inspect |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, SequentialLR |
|
|
import torchmetrics |
|
|
from lightning.pytorch import Trainer, loggers as pl_loggers |
|
|
from lightning.pytorch.profilers import PyTorchProfiler |
|
|
from lightning.pytorch.strategies import DDPStrategy |
|
|
from lightning.pytorch.callbacks import ( |
|
|
Callback, LearningRateMonitor, DeviceStatsMonitor, |
|
|
EarlyStopping, ModelCheckpoint |
|
|
) |
|
|
from lightning.pytorch.utilities import grad_norm |
|
|
from einops import rearrange |
|
|
|
|
|
from models.vae import AutoencoderKL |
|
|
from models.knowledge_alignment import SEVIRAvgIntensityAlignment,get_alignment_kwargs_avg_x |
|
|
from models.diffusion import LatentDiffusion |
|
|
from models.core_model.cuboid_transformer import CuboidTransformerUNet |
|
|
from datamodule import SEVIRLightningDataModule,vis_sevir_seq |
|
|
from utils.path import ( |
|
|
default_exps_dir, |
|
|
default_pretrained_vae_dir,default_pretrained_alignment_dir |
|
|
) |
|
|
from utils.optim import disable_train,warmup_lambda |
|
|
from utils.layout import step_layout_to_in_out_slice |
|
|
from evaluation import FrechetVideoDistance,SEVIRSkillScore |
|
|
|
|
|
|
|
|
class PreDiffSEVIRPLModule(LatentDiffusion): |
|
|
def __init__(self, |
|
|
total_num_steps: int, |
|
|
oc_file: str = None, |
|
|
save_dir: str = None): |
|
|
self.total_num_steps = total_num_steps |
|
|
if oc_file is not None: |
|
|
oc_from_file = OmegaConf.load(open(oc_file, "r")) |
|
|
else: |
|
|
oc_from_file = None |
|
|
oc = self.get_base_config(oc_from_file=oc_from_file) |
|
|
self.save_hyperparameters(oc) |
|
|
self.oc = oc |
|
|
|
|
|
latent_model_cfg = OmegaConf.to_object(oc.model.latent_model) |
|
|
num_blocks = len(latent_model_cfg["depth"]) |
|
|
if isinstance(latent_model_cfg["self_pattern"], str): |
|
|
block_attn_patterns = [latent_model_cfg["self_pattern"]] * num_blocks |
|
|
else: |
|
|
block_attn_patterns = OmegaConf.to_container(latent_model_cfg["self_pattern"]) |
|
|
latent_model = CuboidTransformerUNet( |
|
|
input_shape=latent_model_cfg["input_shape"], |
|
|
target_shape=latent_model_cfg["target_shape"], |
|
|
base_units=latent_model_cfg["base_units"], |
|
|
scale_alpha=latent_model_cfg["scale_alpha"], |
|
|
num_heads=latent_model_cfg["num_heads"], |
|
|
attn_drop=latent_model_cfg["attn_drop"], |
|
|
proj_drop=latent_model_cfg["proj_drop"], |
|
|
ffn_drop=latent_model_cfg["ffn_drop"], |
|
|
|
|
|
downsample=latent_model_cfg["downsample"], |
|
|
downsample_type=latent_model_cfg["downsample_type"], |
|
|
upsample_type=latent_model_cfg["upsample_type"], |
|
|
upsample_kernel_size=latent_model_cfg["upsample_kernel_size"], |
|
|
|
|
|
depth=latent_model_cfg["depth"], |
|
|
block_attn_patterns=block_attn_patterns, |
|
|
|
|
|
num_global_vectors=latent_model_cfg["num_global_vectors"], |
|
|
use_global_vector_ffn=latent_model_cfg["use_global_vector_ffn"], |
|
|
use_global_self_attn=latent_model_cfg["use_global_self_attn"], |
|
|
separate_global_qkv=latent_model_cfg["separate_global_qkv"], |
|
|
global_dim_ratio=latent_model_cfg["global_dim_ratio"], |
|
|
|
|
|
ffn_activation=latent_model_cfg["ffn_activation"], |
|
|
gated_ffn=latent_model_cfg["gated_ffn"], |
|
|
norm_layer=latent_model_cfg["norm_layer"], |
|
|
padding_type=latent_model_cfg["padding_type"], |
|
|
checkpoint_level=latent_model_cfg["checkpoint_level"], |
|
|
pos_embed_type=latent_model_cfg["pos_embed_type"], |
|
|
use_relative_pos=latent_model_cfg["use_relative_pos"], |
|
|
self_attn_use_final_proj=latent_model_cfg["self_attn_use_final_proj"], |
|
|
|
|
|
attn_linear_init_mode=latent_model_cfg["attn_linear_init_mode"], |
|
|
ffn_linear_init_mode=latent_model_cfg["ffn_linear_init_mode"], |
|
|
ffn2_linear_init_mode=latent_model_cfg["ffn2_linear_init_mode"], |
|
|
attn_proj_linear_init_mode=latent_model_cfg["attn_proj_linear_init_mode"], |
|
|
conv_init_mode=latent_model_cfg["conv_init_mode"], |
|
|
down_linear_init_mode=latent_model_cfg["down_up_linear_init_mode"], |
|
|
up_linear_init_mode=latent_model_cfg["down_up_linear_init_mode"], |
|
|
global_proj_linear_init_mode=latent_model_cfg["global_proj_linear_init_mode"], |
|
|
norm_init_mode=latent_model_cfg["norm_init_mode"], |
|
|
|
|
|
time_embed_channels_mult=latent_model_cfg["time_embed_channels_mult"], |
|
|
time_embed_use_scale_shift_norm=latent_model_cfg["time_embed_use_scale_shift_norm"], |
|
|
time_embed_dropout=latent_model_cfg["time_embed_dropout"], |
|
|
unet_res_connect=latent_model_cfg["unet_res_connect"] |
|
|
) |
|
|
|
|
|
vae_cfg = OmegaConf.to_object(oc.model.vae) |
|
|
first_stage_model = AutoencoderKL( |
|
|
down_block_types=vae_cfg["down_block_types"], |
|
|
in_channels=vae_cfg["in_channels"], |
|
|
block_out_channels=vae_cfg["block_out_channels"], |
|
|
act_fn=vae_cfg["act_fn"], |
|
|
latent_channels=vae_cfg["latent_channels"], |
|
|
up_block_types=vae_cfg["up_block_types"], |
|
|
norm_num_groups=vae_cfg["norm_num_groups"], |
|
|
layers_per_block=vae_cfg["layers_per_block"], |
|
|
out_channels=vae_cfg["out_channels"], ) |
|
|
pretrained_ckpt_path = vae_cfg["pretrained_ckpt_path"] |
|
|
if pretrained_ckpt_path is not None: |
|
|
state_dict = torch.load(os.path.join(default_pretrained_vae_dir, vae_cfg["pretrained_ckpt_path"]), |
|
|
map_location=torch.device("cpu")) |
|
|
first_stage_model.load_state_dict(state_dict=state_dict) |
|
|
else: |
|
|
warnings.warn(f"Pretrained weights for `AutoencoderKL` not set. Run for sanity check only.") |
|
|
|
|
|
diffusion_cfg = OmegaConf.to_object(oc.model.diffusion) |
|
|
super(PreDiffSEVIRPLModule, self).__init__( |
|
|
torch_nn_module=latent_model, |
|
|
layout=oc.layout.layout, |
|
|
data_shape=diffusion_cfg["data_shape"], |
|
|
timesteps=diffusion_cfg["timesteps"], |
|
|
beta_schedule=diffusion_cfg["beta_schedule"], |
|
|
loss_type=self.oc.optim.loss_type, |
|
|
monitor=self.oc.optim.monitor, |
|
|
use_ema=diffusion_cfg["use_ema"], |
|
|
log_every_t=diffusion_cfg["log_every_t"], |
|
|
clip_denoised=diffusion_cfg["clip_denoised"], |
|
|
linear_start=diffusion_cfg["linear_start"], |
|
|
linear_end=diffusion_cfg["linear_end"], |
|
|
cosine_s=diffusion_cfg["cosine_s"], |
|
|
given_betas=diffusion_cfg["given_betas"], |
|
|
original_elbo_weight=diffusion_cfg["original_elbo_weight"], |
|
|
v_posterior=diffusion_cfg["v_posterior"], |
|
|
l_simple_weight=diffusion_cfg["l_simple_weight"], |
|
|
parameterization=diffusion_cfg["parameterization"], |
|
|
learn_logvar=diffusion_cfg["learn_logvar"], |
|
|
logvar_init=diffusion_cfg["logvar_init"], |
|
|
|
|
|
latent_shape=diffusion_cfg["latent_shape"], |
|
|
first_stage_model=first_stage_model, |
|
|
cond_stage_model=diffusion_cfg["cond_stage_model"], |
|
|
num_timesteps_cond=diffusion_cfg["num_timesteps_cond"], |
|
|
cond_stage_trainable=diffusion_cfg["cond_stage_trainable"], |
|
|
cond_stage_forward=diffusion_cfg["cond_stage_forward"], |
|
|
scale_by_std=diffusion_cfg["scale_by_std"], |
|
|
scale_factor=diffusion_cfg["scale_factor"], ) |
|
|
|
|
|
knowledge_alignment_cfg = OmegaConf.to_object(oc.model.align) |
|
|
self.alignment_type = knowledge_alignment_cfg["alignment_type"] |
|
|
self.use_alignment = self.alignment_type is not None |
|
|
if self.use_alignment: |
|
|
alignment_ckpt_path = os.path.join(default_pretrained_alignment_dir, knowledge_alignment_cfg["model_ckpt_path"]) |
|
|
self.alignment_obj = SEVIRAvgIntensityAlignment( |
|
|
alignment_type=knowledge_alignment_cfg["alignment_type"], |
|
|
guide_scale=knowledge_alignment_cfg["guide_scale"], |
|
|
model_type=knowledge_alignment_cfg["model_type"], |
|
|
model_args=knowledge_alignment_cfg["model_args"], |
|
|
model_ckpt_path=alignment_ckpt_path |
|
|
) |
|
|
disable_train(self.alignment_obj.model) |
|
|
self.alignment_model = self.alignment_obj.model |
|
|
alignment_fn = self.alignment_obj.get_mean_shift |
|
|
else: |
|
|
alignment_fn = None |
|
|
self.set_alignment(alignment_fn=alignment_fn) |
|
|
|
|
|
self.total_num_steps = total_num_steps |
|
|
|
|
|
self.save_dir = save_dir |
|
|
self.logging_prefix = oc.logging.logging_prefix |
|
|
|
|
|
self.train_example_data_idx_list = list(oc.eval.train_example_data_idx_list) |
|
|
self.val_example_data_idx_list = list(oc.eval.val_example_data_idx_list) |
|
|
self.test_example_data_idx_list = list(oc.eval.test_example_data_idx_list) |
|
|
self.eval_example_only = oc.eval.eval_example_only |
|
|
|
|
|
if self.oc.eval.eval_unaligned: |
|
|
self.valid_mse = torchmetrics.MeanSquaredError() |
|
|
self.valid_mae = torchmetrics.MeanAbsoluteError() |
|
|
self.valid_score = SEVIRSkillScore( |
|
|
mode=self.oc.dataset.metrics_mode, |
|
|
seq_len=self.oc.layout.out_len, |
|
|
layout=self.layout, |
|
|
threshold_list=self.oc.dataset.threshold_list, |
|
|
metrics_list=self.oc.dataset.metrics_list, |
|
|
eps=1e-4 |
|
|
) |
|
|
self.test_mse = torchmetrics.MeanSquaredError() |
|
|
self.test_mae = torchmetrics.MeanAbsoluteError() |
|
|
self.test_ssim = torchmetrics.image.StructuralSimilarityIndexMeasure() |
|
|
self.test_score = SEVIRSkillScore( |
|
|
mode=self.oc.dataset.metrics_mode, |
|
|
seq_len=self.oc.layout.out_len, |
|
|
layout=self.layout, |
|
|
threshold_list=self.oc.dataset.threshold_list, |
|
|
metrics_list=self.oc.dataset.metrics_list, |
|
|
eps=1e-4 |
|
|
) |
|
|
self.test_fvd = FrechetVideoDistance( |
|
|
feature=self.oc.eval.fvd_features, |
|
|
layout=self.layout, |
|
|
reset_real_features=False, |
|
|
normalize=False, |
|
|
auto_t=True, ) |
|
|
if self.oc.eval.eval_aligned: |
|
|
self.valid_aligned_mse = torchmetrics.MeanSquaredError() |
|
|
self.valid_aligned_mae = torchmetrics.MeanAbsoluteError() |
|
|
self.valid_aligned_score = SEVIRSkillScore( |
|
|
mode=self.oc.dataset.metrics_mode, |
|
|
seq_len=self.oc.layout.out_len, |
|
|
layout=self.layout, |
|
|
threshold_list=self.oc.dataset.threshold_list, |
|
|
metrics_list=self.oc.dataset.metrics_list, |
|
|
eps=1e-4, ) |
|
|
self.test_aligned_mse = torchmetrics.MeanSquaredError() |
|
|
self.test_aligned_mae = torchmetrics.MeanAbsoluteError() |
|
|
self.test_aligned_ssim = torchmetrics.image.StructuralSimilarityIndexMeasure() |
|
|
self.test_aligned_score = SEVIRSkillScore( |
|
|
mode=self.oc.dataset.metrics_mode, |
|
|
seq_len=self.oc.layout.out_len, |
|
|
layout=self.layout, |
|
|
threshold_list=self.oc.dataset.threshold_list, |
|
|
metrics_list=self.oc.dataset.metrics_list, |
|
|
eps=1e-4, ) |
|
|
self.test_aligned_fvd = FrechetVideoDistance( |
|
|
feature=self.oc.eval.fvd_features, |
|
|
layout=self.layout, |
|
|
reset_real_features=False, |
|
|
normalize=False, |
|
|
auto_t=True, ) |
|
|
|
|
|
self.configure_save(cfg_file_path=oc_file) |
|
|
|
|
|
def configure_save(self, cfg_file_path=None): |
|
|
self.save_dir = os.path.join(default_exps_dir, self.save_dir) |
|
|
os.makedirs(self.save_dir, exist_ok=True) |
|
|
if cfg_file_path is not None: |
|
|
cfg_file_target_path = os.path.join(self.save_dir, "cfg.yaml") |
|
|
if (not os.path.exists(cfg_file_target_path)) or \ |
|
|
(not os.path.samefile(cfg_file_path, cfg_file_target_path)): |
|
|
copyfile(cfg_file_path, cfg_file_target_path) |
|
|
self.example_save_dir = os.path.join(self.save_dir, "examples") |
|
|
os.makedirs(self.example_save_dir, exist_ok=True) |
|
|
self.npy_save_dir = os.path.join(self.save_dir, "npy") |
|
|
os.makedirs(self.npy_save_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
def get_base_config(self, oc_from_file=None): |
|
|
oc = OmegaConf.create() |
|
|
oc.layout = self.get_layout_config() |
|
|
oc.optim = self.get_optim_config() |
|
|
oc.logging = self.get_logging_config() |
|
|
oc.trainer = self.get_trainer_config() |
|
|
oc.eval = self.get_eval_config() |
|
|
oc.model = self.get_model_config() |
|
|
oc.dataset = self.get_dataset_config() |
|
|
if oc_from_file is not None: |
|
|
|
|
|
oc = OmegaConf.merge(oc, oc_from_file) |
|
|
return oc |
|
|
|
|
|
@staticmethod |
|
|
def get_layout_config(): |
|
|
cfg = OmegaConf.create() |
|
|
cfg.in_len = 7 |
|
|
cfg.out_len = 6 |
|
|
cfg.in_step=1 |
|
|
cfg.out_step=1 |
|
|
cfg.in_out_diff=1 |
|
|
|
|
|
cfg.img_height = 128 |
|
|
cfg.img_width = 128 |
|
|
cfg.data_channels = 4 |
|
|
cfg.layout = "NTHWC" |
|
|
return cfg |
|
|
|
|
|
@staticmethod |
|
|
def get_model_config(): |
|
|
cfg = OmegaConf.create() |
|
|
layout_cfg = PreDiffSEVIRPLModule.get_layout_config() |
|
|
|
|
|
cfg.diffusion = OmegaConf.create() |
|
|
cfg.diffusion.data_shape = (layout_cfg.out_len, |
|
|
layout_cfg.img_height, |
|
|
layout_cfg.img_width, |
|
|
layout_cfg.data_channels) |
|
|
cfg.diffusion.timesteps = 1000 |
|
|
cfg.diffusion.beta_schedule = "linear" |
|
|
cfg.diffusion.use_ema = True |
|
|
cfg.diffusion.log_every_t = 100 |
|
|
cfg.diffusion.clip_denoised = False |
|
|
cfg.diffusion.linear_start = 1e-4 |
|
|
cfg.diffusion.linear_end = 2e-2 |
|
|
cfg.diffusion.cosine_s = 8e-3 |
|
|
cfg.diffusion.given_betas = None |
|
|
cfg.diffusion.original_elbo_weight = 0. |
|
|
cfg.diffusion.v_posterior = 0. |
|
|
cfg.diffusion.l_simple_weight = 1. |
|
|
cfg.diffusion.parameterization = "eps" |
|
|
cfg.diffusion.learn_logvar = None |
|
|
cfg.diffusion.logvar_init = 0. |
|
|
|
|
|
cfg.diffusion.latent_shape = [10, 16, 16, 4] |
|
|
cfg.diffusion.cond_stage_model = "__is_first_stage__" |
|
|
cfg.diffusion.num_timesteps_cond = None |
|
|
cfg.diffusion.cond_stage_trainable = False |
|
|
cfg.diffusion.cond_stage_forward = None |
|
|
cfg.diffusion.scale_by_std = False |
|
|
cfg.diffusion.scale_factor = 1.0 |
|
|
cfg.diffusion.latent_cond_shape = [10, 16, 16, 4] |
|
|
|
|
|
cfg.align = OmegaConf.create() |
|
|
cfg.align.alignment_type = None |
|
|
cfg.align.guide_scale = 1.0 |
|
|
cfg.align.model_type = "cuboid" |
|
|
cfg.align.model_ckpt_path = "tmp.pt" |
|
|
cfg.align.model_args = OmegaConf.create() |
|
|
|
|
|
cfg.align.model_args.input_shape = [6, 16, 16, 4] |
|
|
cfg.align.model_args.out_channels = 2 |
|
|
cfg.align.model_args.base_units = 16 |
|
|
cfg.align.model_args.block_units = None |
|
|
cfg.align.model_args.scale_alpha = 1.0 |
|
|
cfg.align.model_args.depth = [1, 1] |
|
|
cfg.align.model_args.downsample = 2 |
|
|
cfg.align.model_args.downsample_type = "patch_merge" |
|
|
cfg.align.model_args.block_attn_patterns = "axial" |
|
|
cfg.align.model_args.num_heads = 4 |
|
|
cfg.align.model_args.attn_drop = 0.0 |
|
|
cfg.align.model_args.proj_drop = 0.0 |
|
|
cfg.align.model_args.ffn_drop = 0.0 |
|
|
cfg.align.model_args.ffn_activation = "gelu" |
|
|
cfg.align.model_args.gated_ffn = False |
|
|
cfg.align.model_args.norm_layer = "layer_norm" |
|
|
cfg.align.model_args.use_inter_ffn = True |
|
|
cfg.align.model_args.hierarchical_pos_embed = False |
|
|
cfg.align.model_args.pos_embed_type = 't+h+w' |
|
|
cfg.align.model_args.padding_type = "zero" |
|
|
cfg.align.model_args.checkpoint_level = 0 |
|
|
cfg.align.model_args.use_relative_pos = True |
|
|
cfg.align.model_args.self_attn_use_final_proj = True |
|
|
|
|
|
cfg.align.model_args.num_global_vectors = 0 |
|
|
cfg.align.model_args.use_global_vector_ffn = True |
|
|
cfg.align.model_args.use_global_self_attn = False |
|
|
cfg.align.model_args.separate_global_qkv = False |
|
|
cfg.align.model_args.global_dim_ratio = 1 |
|
|
|
|
|
cfg.align.model_args.attn_linear_init_mode = "0" |
|
|
cfg.align.model_args.ffn_linear_init_mode = "0" |
|
|
cfg.align.model_args.ffn2_linear_init_mode = "2" |
|
|
cfg.align.model_args.attn_proj_linear_init_mode = "2" |
|
|
cfg.align.model_args.conv_init_mode = "0" |
|
|
cfg.align.model_args.down_linear_init_mode = "0" |
|
|
cfg.align.model_args.global_proj_linear_init_mode = "2" |
|
|
cfg.align.model_args.norm_init_mode = "0" |
|
|
|
|
|
cfg.align.model_args.time_embed_channels_mult = 4 |
|
|
cfg.align.model_args.time_embed_use_scale_shift_norm = False |
|
|
cfg.align.model_args.time_embed_dropout = 0.0 |
|
|
|
|
|
cfg.align.model_args.pool = "attention" |
|
|
cfg.align.model_args.readout_seq = True |
|
|
cfg.align.model_args.out_len = 6 |
|
|
|
|
|
cfg.latent_model = OmegaConf.create() |
|
|
cfg.latent_model.input_shape = [10, 16, 16, 4] |
|
|
cfg.latent_model.target_shape = [10, 16, 16, 4] |
|
|
cfg.latent_model.base_units = 4 |
|
|
|
|
|
cfg.latent_model.scale_alpha = 1.0 |
|
|
cfg.latent_model.num_heads = 4 |
|
|
cfg.latent_model.attn_drop = 0.1 |
|
|
cfg.latent_model.proj_drop = 0.1 |
|
|
cfg.latent_model.ffn_drop = 0.1 |
|
|
|
|
|
cfg.latent_model.downsample = 2 |
|
|
cfg.latent_model.downsample_type = "patch_merge" |
|
|
cfg.latent_model.upsample_type = "upsample" |
|
|
cfg.latent_model.upsample_kernel_size = 3 |
|
|
|
|
|
cfg.latent_model.depth = [1, 1] |
|
|
cfg.latent_model.self_pattern = "axial" |
|
|
|
|
|
cfg.latent_model.num_global_vectors = 0 |
|
|
cfg.latent_model.use_dec_self_global = False |
|
|
cfg.latent_model.dec_self_update_global = True |
|
|
cfg.latent_model.use_dec_cross_global = False |
|
|
cfg.latent_model.use_global_vector_ffn = False |
|
|
cfg.latent_model.use_global_self_attn = True |
|
|
cfg.latent_model.separate_global_qkv = True |
|
|
cfg.latent_model.global_dim_ratio = 1 |
|
|
|
|
|
cfg.latent_model.ffn_activation = "gelu" |
|
|
cfg.latent_model.gated_ffn = False |
|
|
cfg.latent_model.norm_layer = "layer_norm" |
|
|
cfg.latent_model.padding_type = "zeros" |
|
|
cfg.latent_model.pos_embed_type = "t+h+w" |
|
|
cfg.latent_model.checkpoint_level = 0 |
|
|
cfg.latent_model.use_relative_pos = True |
|
|
cfg.latent_model.self_attn_use_final_proj = True |
|
|
|
|
|
cfg.latent_model.attn_linear_init_mode = "0" |
|
|
cfg.latent_model.ffn_linear_init_mode = "0" |
|
|
cfg.latent_model.ffn2_linear_init_mode = "2" |
|
|
cfg.latent_model.attn_proj_linear_init_mode = "2" |
|
|
cfg.latent_model.conv_init_mode = "0" |
|
|
cfg.latent_model.down_up_linear_init_mode = "0" |
|
|
cfg.latent_model.global_proj_linear_init_mode = "2" |
|
|
cfg.latent_model.norm_init_mode = "0" |
|
|
|
|
|
cfg.latent_model.time_embed_channels_mult = 4 |
|
|
cfg.latent_model.time_embed_use_scale_shift_norm = False |
|
|
cfg.latent_model.time_embed_dropout = 0.0 |
|
|
cfg.latent_model.unet_res_connect = True |
|
|
|
|
|
cfg.vae = OmegaConf.create() |
|
|
cfg.vae.data_channels = layout_cfg.data_channels |
|
|
|
|
|
cfg.vae.down_block_types = ['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] |
|
|
cfg.vae.in_channels = cfg.vae.data_channels |
|
|
cfg.vae.block_out_channels = [128, 256, 512, 512] |
|
|
cfg.vae.act_fn = 'silu' |
|
|
cfg.vae.latent_channels = 4 |
|
|
cfg.vae.up_block_types = ['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] |
|
|
cfg.vae.norm_num_groups = 32 |
|
|
cfg.vae.layers_per_block = 2 |
|
|
cfg.vae.out_channels = cfg.vae.data_channels |
|
|
return cfg |
|
|
|
|
|
@staticmethod |
|
|
def get_dataset_config(): |
|
|
cfg = OmegaConf.create() |
|
|
cfg.dataset_name = "sevir_lr" |
|
|
cfg.img_height = 128 |
|
|
cfg.img_width = 128 |
|
|
cfg.in_len = 7 |
|
|
cfg.out_len = 6 |
|
|
cfg.seq_len = 13 |
|
|
cfg.plot_stride = 1 |
|
|
cfg.interval_real_time = 10 |
|
|
cfg.sample_mode = "sequent" |
|
|
cfg.stride = cfg.out_len |
|
|
cfg.layout = "NTHWC" |
|
|
cfg.start_date = None |
|
|
cfg.train_val_split_date = (2019, 1, 1) |
|
|
cfg.train_test_split_date = (2019, 6, 1) |
|
|
cfg.end_date = None |
|
|
cfg.metrics_mode = "0" |
|
|
cfg.metrics_list = ('csi', 'pod', 'sucr', 'bias') |
|
|
cfg.threshold_list = (16, 74, 133, 160, 181, 219) |
|
|
cfg.aug_mode = "1" |
|
|
return cfg |
|
|
|
|
|
@staticmethod |
|
|
def get_optim_config(): |
|
|
cfg = OmegaConf.create() |
|
|
cfg.seed = None |
|
|
cfg.total_batch_size = 32 |
|
|
cfg.micro_batch_size = 8 |
|
|
cfg.float32_matmul_precision = "high" |
|
|
|
|
|
cfg.method = "adamw" |
|
|
cfg.lr = 1.0E-6 |
|
|
cfg.wd = 1.0E-2 |
|
|
cfg.betas = (0.9, 0.999) |
|
|
cfg.gradient_clip_val = 1.0 |
|
|
cfg.max_epochs = 50 |
|
|
cfg.loss_type = "l2" |
|
|
|
|
|
cfg.warmup_percentage = 0.2 |
|
|
cfg.lr_scheduler_mode = "cosine" |
|
|
cfg.min_lr_ratio = 1.0E-3 |
|
|
cfg.warmup_min_lr_ratio = 0.0 |
|
|
|
|
|
cfg.monitor = "valid_loss_epoch" |
|
|
cfg.early_stop = False |
|
|
cfg.early_stop_mode = "min" |
|
|
cfg.early_stop_patience = 5 |
|
|
cfg.save_top_k = 1 |
|
|
return cfg |
|
|
|
|
|
@staticmethod |
|
|
def get_logging_config(): |
|
|
cfg = OmegaConf.create() |
|
|
cfg.logging_prefix = "PreDiff" |
|
|
cfg.monitor_lr = True |
|
|
cfg.monitor_device = False |
|
|
cfg.track_grad_norm = -1 |
|
|
cfg.use_wandb = False |
|
|
cfg.profiler = None |
|
|
cfg.save_npy = False |
|
|
return cfg |
|
|
|
|
|
@staticmethod |
|
|
def get_trainer_config(): |
|
|
cfg = OmegaConf.create() |
|
|
cfg.check_val_every_n_epoch = 1 |
|
|
cfg.log_step_ratio = 0.001 |
|
|
cfg.precision = 32 |
|
|
cfg.find_unused_parameters = True |
|
|
cfg.num_sanity_val_steps = 2 |
|
|
return cfg |
|
|
|
|
|
@staticmethod |
|
|
def get_eval_config(): |
|
|
cfg = OmegaConf.create() |
|
|
cfg.train_example_data_idx_list = [0, ] |
|
|
cfg.val_example_data_idx_list = [0, ] |
|
|
cfg.test_example_data_idx_list = [0, ] |
|
|
cfg.eval_example_only = False |
|
|
cfg.eval_aligned = True |
|
|
cfg.eval_unaligned = True |
|
|
cfg.num_samples_per_context = 1 |
|
|
cfg.font_size = 20 |
|
|
cfg.label_offset = (-0.5, 0.5) |
|
|
cfg.label_avg_int = False |
|
|
cfg.fvd_features = 400 |
|
|
return cfg |
|
|
|
|
|
|
|
|
|
|
|
def configure_optimizers(self): |
|
|
optim_cfg = self.oc.optim |
|
|
params = list(self.torch_nn_module.parameters()) |
|
|
if self.cond_stage_trainable: |
|
|
print(f"{self.__class__.__name__}: Also optimizing conditioner params!") |
|
|
params = params + list(self.cond_stage_model.parameters()) |
|
|
if self.learn_logvar: |
|
|
print('Diffusion model optimizing logvar') |
|
|
params.append(self.logvar) |
|
|
|
|
|
if optim_cfg.method == "adamw": |
|
|
optimizer = torch.optim.AdamW(params, lr=optim_cfg.lr, betas=optim_cfg.betas) |
|
|
else: |
|
|
raise NotImplementedError(f"opimization method {optim_cfg.method} not supported.") |
|
|
|
|
|
warmup_iter = int(np.round(self.oc.optim.warmup_percentage * self.total_num_steps)) |
|
|
if optim_cfg.lr_scheduler_mode == 'none': |
|
|
return {'optimizer': optimizer} |
|
|
else: |
|
|
if optim_cfg.lr_scheduler_mode == 'cosine': |
|
|
warmup_scheduler = LambdaLR(optimizer, |
|
|
lr_lambda=warmup_lambda(warmup_steps=warmup_iter, |
|
|
min_lr_ratio=optim_cfg.warmup_min_lr_ratio)) |
|
|
cosine_scheduler = CosineAnnealingLR(optimizer, |
|
|
T_max=(self.total_num_steps - warmup_iter), |
|
|
eta_min=optim_cfg.min_lr_ratio * optim_cfg.lr) |
|
|
lr_scheduler = SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_scheduler], |
|
|
milestones=[warmup_iter]) |
|
|
lr_scheduler_config = { |
|
|
'scheduler': lr_scheduler, |
|
|
'interval': 'step', |
|
|
'frequency': 1, |
|
|
} |
|
|
else: |
|
|
raise NotImplementedError |
|
|
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler_config} |
|
|
|
|
|
def set_trainer_kwargs(self, **kwargs): |
|
|
r""" |
|
|
Default kwargs used when initializing pl.Trainer |
|
|
""" |
|
|
if self.oc.logging.profiler is None: |
|
|
profiler = None |
|
|
elif self.oc.logging.profiler == "pytorch": |
|
|
profiler = PyTorchProfiler(filename=f"{self.oc.logging.logging_prefix}_PyTorchProfiler.log") |
|
|
else: |
|
|
raise NotImplementedError |
|
|
checkpoint_callback = ModelCheckpoint( |
|
|
monitor=self.oc.optim.monitor, |
|
|
dirpath=os.path.join(self.save_dir, "checkpoints"), |
|
|
filename="{epoch:03d}_{val/loss:.4f}", |
|
|
auto_insert_metric_name=False, |
|
|
save_top_k=self.oc.optim.save_top_k, |
|
|
save_last=True, |
|
|
mode="min", |
|
|
) |
|
|
callbacks = kwargs.pop("callbacks", []) |
|
|
assert isinstance(callbacks, list) |
|
|
for ele in callbacks: |
|
|
assert isinstance(ele, Callback) |
|
|
callbacks += [checkpoint_callback, ] |
|
|
if self.oc.logging.monitor_lr: |
|
|
callbacks += [LearningRateMonitor(logging_interval='step'), ] |
|
|
if self.oc.logging.monitor_device: |
|
|
callbacks += [DeviceStatsMonitor(), ] |
|
|
if self.oc.optim.early_stop: |
|
|
callbacks += [EarlyStopping(monitor=self.oc.optim.monitor, |
|
|
min_delta=0.0, |
|
|
patience=self.oc.optim.early_stop_patience, |
|
|
verbose=False, |
|
|
mode=self.oc.optim.early_stop_mode), ] |
|
|
|
|
|
logger = kwargs.pop("logger", []) |
|
|
tb_logger = pl_loggers.TensorBoardLogger(save_dir=self.save_dir) |
|
|
csv_logger = pl_loggers.CSVLogger(save_dir=self.save_dir) |
|
|
logger += [tb_logger, csv_logger] |
|
|
if self.oc.logging.use_wandb: |
|
|
wandb_logger = pl_loggers.WandbLogger( |
|
|
name = self.oc.logging.logging_name, |
|
|
id = self.oc.logging.run_id, |
|
|
project=self.oc.logging.logging_prefix, |
|
|
save_dir=self.save_dir |
|
|
) |
|
|
logger += [wandb_logger, ] |
|
|
|
|
|
log_every_n_steps = max(1, int(self.oc.trainer.log_step_ratio * self.total_num_steps)) |
|
|
trainer_init_keys = inspect.signature(Trainer).parameters.keys() |
|
|
ret = dict( |
|
|
callbacks=callbacks, |
|
|
|
|
|
logger=logger, |
|
|
log_every_n_steps=log_every_n_steps, |
|
|
profiler=profiler, |
|
|
|
|
|
default_root_dir=self.save_dir, |
|
|
|
|
|
accelerator="gpu", |
|
|
strategy=DDPStrategy(find_unused_parameters=self.oc.trainer.find_unused_parameters), |
|
|
|
|
|
|
|
|
max_epochs=self.oc.optim.max_epochs, |
|
|
check_val_every_n_epoch=self.oc.trainer.check_val_every_n_epoch, |
|
|
gradient_clip_val=self.oc.optim.gradient_clip_val, |
|
|
|
|
|
precision=self.oc.trainer.precision, |
|
|
|
|
|
num_sanity_val_steps=self.oc.trainer.num_sanity_val_steps, |
|
|
inference_mode=False, |
|
|
) |
|
|
oc_trainer_kwargs = OmegaConf.to_object(self.oc.trainer) |
|
|
oc_trainer_kwargs = {key: val for key, val in oc_trainer_kwargs.items() if key in trainer_init_keys} |
|
|
ret.update(oc_trainer_kwargs) |
|
|
ret.update(kwargs) |
|
|
return ret |
|
|
|
|
|
|
|
|
|
|
|
@classmethod |
|
|
def get_total_num_steps( |
|
|
cls, |
|
|
num_samples: int, |
|
|
total_batch_size: int, |
|
|
epoch: int = None): |
|
|
r""" |
|
|
Parameters |
|
|
---------- |
|
|
num_samples: int |
|
|
The number of samples of the datasets. `num_samples / micro_batch_size` is the number of steps per epoch. |
|
|
total_batch_size: int |
|
|
`total_batch_size == micro_batch_size * world_size * grad_accum` |
|
|
epoch: int |
|
|
""" |
|
|
if epoch is None: |
|
|
epoch = cls.get_optim_config().max_epochs |
|
|
return int(epoch * num_samples / total_batch_size) |
|
|
|
|
|
@staticmethod |
|
|
def get_sevir_datamodule(dataset_cfg, |
|
|
micro_batch_size: int = 1, |
|
|
num_workers: int = 4): |
|
|
dm = SEVIRLightningDataModule( |
|
|
seq_len=dataset_cfg["seq_len"], |
|
|
sample_mode=dataset_cfg["sample_mode"], |
|
|
stride=dataset_cfg["stride"], |
|
|
batch_size=micro_batch_size, |
|
|
layout=dataset_cfg["layout"], |
|
|
output_type=np.float32, |
|
|
preprocess=True, |
|
|
rescale_method="01", |
|
|
verbose=False, |
|
|
aug_mode=dataset_cfg["aug_mode"], |
|
|
ret_contiguous=False, |
|
|
|
|
|
dataset_name=dataset_cfg["dataset_name"], |
|
|
start_date=dataset_cfg["start_date"], |
|
|
train_test_split_date=dataset_cfg["train_test_split_date"], |
|
|
end_date=dataset_cfg["end_date"], |
|
|
val_ratio=dataset_cfg["val_ratio"], |
|
|
num_workers=num_workers, ) |
|
|
return dm |
|
|
|
|
|
@property |
|
|
def in_slice(self): |
|
|
if not hasattr(self, "_in_slice"): |
|
|
in_slice, out_slice = step_layout_to_in_out_slice( |
|
|
layout=self.oc.layout.layout, |
|
|
in_len=self.oc.layout.in_len, in_step= self.oc.layout.in_step, |
|
|
out_len=self.oc.layout.out_len, out_step = self.oc.layout.out_step, |
|
|
in_out_diff= self.oc.layout.in_out_diff |
|
|
) |
|
|
self._in_slice = in_slice |
|
|
self._out_slice = out_slice |
|
|
return self._in_slice |
|
|
|
|
|
@property |
|
|
def out_slice(self): |
|
|
if not hasattr(self, "_out_slice"): |
|
|
in_slice, out_slice = step_layout_to_in_out_slice( |
|
|
layout=self.oc.layout.layout, |
|
|
in_len=self.oc.layout.in_len, in_step= self.oc.layout.in_step, |
|
|
out_len=self.oc.layout.out_len, out_step = self.oc.layout.out_step, |
|
|
in_out_diff= self.oc.layout.in_out_diff |
|
|
) |
|
|
self._in_slice = in_slice |
|
|
self._out_slice = out_slice |
|
|
return self._out_slice |
|
|
|
|
|
@torch.no_grad() |
|
|
def get_input(self, batch, **kwargs): |
|
|
r""" |
|
|
dataset dependent |
|
|
re-implement it for each specific dataset |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
batch: Any |
|
|
raw data batch from specific dataloader |
|
|
|
|
|
Returns |
|
|
------- |
|
|
out: Sequence[torch.Tensor, Dict[str, Any]] |
|
|
out[0] should be a torch.Tensor which is the target to generate |
|
|
out[1] should be a dict consists of several key-value pairs for conditioning |
|
|
""" |
|
|
return self._get_input_sevirlr(batch=batch, return_verbose=kwargs.get("return_verbose", False)) |
|
|
|
|
|
@torch.no_grad() |
|
|
def _get_input_sevirlr(self, batch, return_verbose=False): |
|
|
seq = batch |
|
|
in_seq = seq[self.in_slice] |
|
|
out_seq = seq[self.out_slice].contiguous() |
|
|
if return_verbose: |
|
|
return out_seq, {"y": in_seq}, in_seq |
|
|
else: |
|
|
return out_seq, {"y": in_seq} |
|
|
|
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx): |
|
|
loss, loss_dict = self(batch) |
|
|
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=False) |
|
|
micro_batch_size = batch.shape[self.batch_axis] |
|
|
data_idx = int(batch_idx * micro_batch_size) |
|
|
if self.current_epoch % self.oc.trainer.check_val_every_n_epoch == 0 \ |
|
|
and self.local_rank == 0: |
|
|
if data_idx in self.train_example_data_idx_list: |
|
|
target_seq, cond, context_seq = \ |
|
|
self.get_input(batch, return_verbose=True) |
|
|
aligned_pred_seq_list = [] |
|
|
aligned_pred_label_list = [] |
|
|
pred_seq_list = [] |
|
|
pred_label_list = [] |
|
|
for i in range(self.oc.eval.num_samples_per_context): |
|
|
|
|
|
if self.use_alignment and self.oc.eval.eval_aligned: |
|
|
if self.alignment_type == "avg_x": |
|
|
alignment_kwargs = get_alignment_kwargs_avg_x(context_seq=context_seq, |
|
|
target_seq=target_seq) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
pred_seq = self.sample( |
|
|
cond=cond, |
|
|
batch_size=micro_batch_size, |
|
|
return_intermediates=False, |
|
|
use_alignment=True, |
|
|
alignment_kwargs=alignment_kwargs, |
|
|
verbose=False, ).contiguous() |
|
|
aligned_pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy()) |
|
|
aligned_pred_label_list.append(f"{self.oc.logging.logging_prefix}_aligned_pred_{i}") |
|
|
|
|
|
if self.oc.eval.eval_unaligned: |
|
|
pred_seq = self.sample( |
|
|
cond=cond, |
|
|
batch_size=micro_batch_size, |
|
|
return_intermediates=False, |
|
|
verbose=False, ).contiguous() |
|
|
pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy()) |
|
|
pred_label_list.append(f"{self.oc.logging.logging_prefix}_pred_{i}") |
|
|
pred_seq_list = aligned_pred_seq_list + pred_seq_list |
|
|
pred_label_list = aligned_pred_label_list + pred_label_list |
|
|
self.save_vis_step_end( |
|
|
data_idx=data_idx, |
|
|
context_seq=context_seq[0].detach().float().cpu().numpy(), |
|
|
target_seq=target_seq[0].detach().float().cpu().numpy(), |
|
|
pred_seq=pred_seq_list, |
|
|
pred_label=pred_label_list, |
|
|
mode="train", ) |
|
|
return loss |
|
|
|
|
|
def validation_step(self, batch, batch_idx): |
|
|
_, loss_dict_no_ema = self(batch) |
|
|
with self.ema_scope(): |
|
|
_, loss_dict_ema = self(batch) |
|
|
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} |
|
|
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
micro_batch_size = batch.shape[self.batch_axis] |
|
|
data_idx = int(batch_idx * micro_batch_size) |
|
|
if not self.eval_example_only or data_idx in self.val_example_data_idx_list: |
|
|
target_seq, cond, context_seq = \ |
|
|
self.get_input(batch, return_verbose=True) |
|
|
aligned_pred_seq_list = [] |
|
|
aligned_pred_label_list = [] |
|
|
pred_seq_list = [] |
|
|
pred_label_list = [] |
|
|
for i in range(self.oc.eval.num_samples_per_context): |
|
|
|
|
|
if self.use_alignment and self.oc.eval.eval_aligned: |
|
|
if self.alignment_type == "avg_x": |
|
|
alignment_kwargs = get_alignment_kwargs_avg_x(context_seq=context_seq, |
|
|
target_seq=target_seq) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
pred_seq = self.sample( |
|
|
cond=cond, |
|
|
batch_size=micro_batch_size, |
|
|
return_intermediates=False, |
|
|
use_alignment=True, |
|
|
alignment_kwargs=alignment_kwargs, |
|
|
verbose=False, ).contiguous() |
|
|
aligned_pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy()) |
|
|
aligned_pred_label_list.append(f"{self.oc.logging.logging_prefix}_aligned_pred_{i}") |
|
|
if pred_seq.dtype is not torch.float: |
|
|
pred_seq = pred_seq.float() |
|
|
self.valid_aligned_mse(pred_seq, target_seq) |
|
|
self.valid_aligned_mae(pred_seq, target_seq) |
|
|
self.valid_aligned_score.update(pred_seq, target_seq) |
|
|
|
|
|
if self.oc.eval.eval_unaligned: |
|
|
pred_seq = self.sample( |
|
|
cond=cond, |
|
|
batch_size=micro_batch_size, |
|
|
return_intermediates=False, |
|
|
verbose=False, ).contiguous() |
|
|
pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy()) |
|
|
pred_label_list.append(f"{self.oc.logging.logging_prefix}_pred_{i}") |
|
|
if pred_seq.dtype is not torch.float: |
|
|
pred_seq = pred_seq.float() |
|
|
self.valid_mse(pred_seq, target_seq) |
|
|
self.valid_mae(pred_seq, target_seq) |
|
|
self.valid_score.update(pred_seq, target_seq) |
|
|
pred_seq_list = aligned_pred_seq_list + pred_seq_list |
|
|
pred_label_list = aligned_pred_label_list + pred_label_list |
|
|
self.save_vis_step_end( |
|
|
data_idx=data_idx, |
|
|
context_seq=context_seq[0].detach().float().cpu().numpy(), |
|
|
target_seq=target_seq[0].detach().float().cpu().numpy(), |
|
|
pred_seq=pred_seq_list, |
|
|
pred_label=pred_label_list, |
|
|
mode="val", |
|
|
suffix=f"_rank{self.local_rank}", ) |
|
|
def on_validation_epoch_end(self): |
|
|
if self.oc.eval.eval_unaligned: |
|
|
valid_mse = self.valid_mse.compute() |
|
|
valid_mae = self.valid_mae.compute() |
|
|
valid_score = self.valid_score.compute() |
|
|
valid_loss = -valid_score["avg"]["csi"] |
|
|
|
|
|
self.log('valid_loss_epoch', valid_loss, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log('valid_mse_epoch', valid_mse, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log('valid_mae_epoch', valid_mae, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log_score_epoch_end(score_dict=valid_score, prefix="valid") |
|
|
self.valid_mse.reset() |
|
|
self.valid_mae.reset() |
|
|
self.valid_score.reset() |
|
|
if self.oc.eval.eval_aligned: |
|
|
valid_mse = self.valid_aligned_mse.compute() |
|
|
valid_mae = self.valid_aligned_mae.compute() |
|
|
valid_score = self.valid_aligned_score.compute() |
|
|
valid_loss = -valid_score["avg"]["csi"] |
|
|
|
|
|
self.log('valid_aligned_loss_epoch', valid_loss, prog_bar=True, on_step=False, on_epoch=True, |
|
|
sync_dist=True) |
|
|
self.log('valid_aligned_mse_epoch', valid_mse, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log('valid_aligned_mae_epoch', valid_mae, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log_score_epoch_end(score_dict=valid_score, prefix="valid_aligned") |
|
|
self.valid_aligned_mse.reset() |
|
|
self.valid_aligned_mae.reset() |
|
|
self.valid_aligned_score.reset() |
|
|
|
|
|
def test_step(self, batch, batch_idx): |
|
|
micro_batch_size = batch.shape[self.batch_axis] |
|
|
data_idx = int(batch_idx * micro_batch_size) |
|
|
if not self.eval_example_only or data_idx in self.val_example_data_idx_list: |
|
|
target_seq, cond, context_seq = \ |
|
|
self.get_input(batch, return_verbose=True) |
|
|
target_seq_bchw = rearrange(target_seq, "b t h w c -> (b t) c h w") |
|
|
aligned_pred_seq_list = [] |
|
|
aligned_pred_label_list = [] |
|
|
pred_seq_list = [] |
|
|
pred_label_list = [] |
|
|
for i in range(self.oc.eval.num_samples_per_context): |
|
|
|
|
|
if self.use_alignment and self.oc.eval.eval_aligned: |
|
|
if self.alignment_type == "avg_x": |
|
|
alignment_kwargs = get_alignment_kwargs_avg_x(context_seq=context_seq, |
|
|
target_seq=target_seq) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
pred_seq = self.sample( |
|
|
cond=cond, |
|
|
batch_size=micro_batch_size, |
|
|
return_intermediates=False, |
|
|
use_alignment=True, |
|
|
alignment_kwargs=alignment_kwargs, |
|
|
verbose=False, ).contiguous() |
|
|
if self.oc.logging.save_npy: |
|
|
npy_path = os.path.join(self.npy_save_dir, |
|
|
f"batch{batch_idx}_rank{self.local_rank}_sample{i}_aligned.npy") |
|
|
np.save(npy_path, pred_seq.detach().float().cpu().numpy()) |
|
|
aligned_pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy()) |
|
|
aligned_pred_label_list.append(f"{self.oc.logging.logging_prefix}_aligned_pred_{i}") |
|
|
if pred_seq.dtype is not torch.float: |
|
|
pred_seq = pred_seq.float() |
|
|
self.test_aligned_mse(pred_seq, target_seq) |
|
|
self.test_aligned_mae(pred_seq, target_seq) |
|
|
self.test_aligned_score.update(pred_seq, target_seq) |
|
|
|
|
|
pred_seq_bchw = rearrange(pred_seq, "b t h w c -> (b t) c h w") |
|
|
self.test_aligned_ssim(pred_seq_bchw, target_seq_bchw) |
|
|
|
|
|
if self.oc.eval.eval_unaligned: |
|
|
pred_seq = self.sample( |
|
|
cond=cond, |
|
|
batch_size=micro_batch_size, |
|
|
return_intermediates=False, |
|
|
verbose=False, ).contiguous() |
|
|
if self.oc.logging.save_npy: |
|
|
npy_path = os.path.join(self.npy_save_dir, |
|
|
f"batch{batch_idx}_rank{self.local_rank}_sample{i}.npy") |
|
|
np.save(npy_path, pred_seq.detach().float().cpu().numpy()) |
|
|
pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy()) |
|
|
pred_label_list.append(f"{self.oc.logging.logging_prefix}_pred_{i}") |
|
|
if pred_seq.dtype is not torch.float: |
|
|
pred_seq = pred_seq.float() |
|
|
self.test_mse(pred_seq, target_seq) |
|
|
self.test_mae(pred_seq, target_seq) |
|
|
self.test_score.update(pred_seq, target_seq) |
|
|
|
|
|
pred_seq_bchw = rearrange(pred_seq, "b t h w c -> (b t) c h w") |
|
|
self.test_ssim(pred_seq_bchw, target_seq_bchw) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pred_seq_list = aligned_pred_seq_list + pred_seq_list |
|
|
pred_label_list = aligned_pred_label_list + pred_label_list |
|
|
self.save_vis_step_end( |
|
|
data_idx=data_idx, |
|
|
context_seq=context_seq[0].detach().float().cpu().numpy(), |
|
|
target_seq=target_seq[0].detach().float().cpu().numpy(), |
|
|
pred_seq=pred_seq_list, |
|
|
pred_label=pred_label_list, |
|
|
mode="test", |
|
|
suffix=f"_rank{self.local_rank}", ) |
|
|
def on_test_epoch_end(self): |
|
|
if self.oc.eval.eval_unaligned: |
|
|
test_mse = self.test_mse.compute() |
|
|
test_mae = self.test_mae.compute() |
|
|
test_ssim = self.test_ssim.compute() |
|
|
test_score = self.test_score.compute() |
|
|
|
|
|
|
|
|
self.log('test_mse_epoch', test_mse, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log('test_mae_epoch', test_mae, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log('test_ssim_epoch', test_ssim, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log_score_epoch_end(score_dict=test_score, prefix="test") |
|
|
|
|
|
self.test_mse.reset() |
|
|
self.test_mae.reset() |
|
|
self.test_ssim.reset() |
|
|
self.test_score.reset() |
|
|
|
|
|
if self.oc.eval.eval_aligned: |
|
|
test_mse = self.test_aligned_mse.compute() |
|
|
test_mae = self.test_aligned_mae.compute() |
|
|
test_ssim = self.test_aligned_ssim.compute() |
|
|
test_score = self.test_aligned_score.compute() |
|
|
|
|
|
|
|
|
self.log('test_aligned_mse_epoch', test_mse, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log('test_aligned_mae_epoch', test_mae, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log('test_aligned_ssim_epoch', test_ssim, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
self.log_score_epoch_end(score_dict=test_score, prefix="test_aligned") |
|
|
|
|
|
self.test_aligned_mse.reset() |
|
|
self.test_aligned_mae.reset() |
|
|
self.test_aligned_ssim.reset() |
|
|
self.test_aligned_score.reset() |
|
|
|
|
|
|
|
|
|
|
|
def save_vis_step_end( |
|
|
self, |
|
|
data_idx: int, |
|
|
context_seq: np.ndarray, |
|
|
target_seq: np.ndarray, |
|
|
pred_seq: Union[np.ndarray, Sequence[np.ndarray]], |
|
|
pred_label: Union[str, Sequence[str]] = None, |
|
|
label_mode: str = "name", |
|
|
mode: str = "train", |
|
|
prefix: str = "", |
|
|
suffix: str = "", ): |
|
|
r""" |
|
|
Parameters |
|
|
---------- |
|
|
data_idx |
|
|
context_seq, target_seq, pred_seq: np.ndarray |
|
|
layout should not include batch |
|
|
mode: str |
|
|
""" |
|
|
if mode == "train": |
|
|
example_data_idx_list = self.train_example_data_idx_list |
|
|
elif mode == "val": |
|
|
example_data_idx_list = self.val_example_data_idx_list |
|
|
elif mode == "test": |
|
|
example_data_idx_list = self.test_example_data_idx_list |
|
|
else: |
|
|
raise ValueError(f"Wrong mode {mode}! Must be in ['train', 'val', 'test'].") |
|
|
if label_mode == "name": |
|
|
|
|
|
context_label = "context" |
|
|
target_label = "target" |
|
|
elif label_mode == "avg_int": |
|
|
context_label = f"context\navg_int={np.mean(context_seq):.4f}" |
|
|
target_label = f"target\navg_int={np.mean(target_seq):.4f}" |
|
|
if isinstance(pred_label, Sequence): |
|
|
pred_label = [f"{label}\navg_int={np.mean(seq):.4f}" for label, seq in zip(pred_label, pred_seq)] |
|
|
elif isinstance(pred_label, str): |
|
|
pred_label = f"{pred_label}\navg_int={np.mean(pred_seq):.4f}" |
|
|
else: |
|
|
raise TypeError(f"Wrong pred_label type {type(pred_label)}! must be in [str, Sequence[str]].") |
|
|
else: |
|
|
raise NotImplementedError |
|
|
if isinstance(pred_seq, Sequence): |
|
|
seq_list = [context_seq, target_seq] + list(pred_seq) |
|
|
label_list = [context_label, target_label] + pred_label |
|
|
else: |
|
|
seq_list = [context_seq, target_seq, pred_seq] |
|
|
label_list = [context_label, target_label, pred_label] |
|
|
if data_idx in example_data_idx_list: |
|
|
png_save_name = f"{prefix}{mode}_epoch_{self.current_epoch}_data_{data_idx}{suffix}.png" |
|
|
vis_sevir_seq( |
|
|
save_path=os.path.join(self.example_save_dir, png_save_name), |
|
|
seq=seq_list, |
|
|
label=label_list, |
|
|
interval_real_time=10, |
|
|
plot_stride=1, fs=self.oc.eval.fs, |
|
|
label_offset=self.oc.eval.label_offset, |
|
|
label_avg_int=self.oc.eval.label_avg_int, ) |
|
|
|
|
|
def log_score_epoch_end(self, score_dict: Dict, prefix: str = "valid"): |
|
|
for metrics in self.oc.dataset.metrics_list: |
|
|
for thresh in self.oc.dataset.threshold_list: |
|
|
score_mean = np.mean(score_dict[thresh][metrics]).item() |
|
|
self.log(f"{prefix}_{metrics}_{thresh}_epoch", score_mean, |
|
|
prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
score_avg_mean = score_dict.get("avg", None) |
|
|
if score_avg_mean is not None: |
|
|
score_avg_mean = np.mean(score_avg_mean[metrics]).item() |
|
|
self.log(f"{prefix}_{metrics}_avg_epoch", score_avg_mean, |
|
|
prog_bar=True, on_step=False, on_epoch=True, sync_dist=True) |
|
|
|
|
|
def on_before_optimizer_step(self, optimizer): |
|
|
|
|
|
|
|
|
|
|
|
if self.oc.logging.track_grad_norm != -1: |
|
|
norms = grad_norm(self.torch_nn_module, norm_type=self.oc.logging.track_grad_norm) |
|
|
self.log_dict(norms) |
|
|
|