Ukrainian - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Ukrainian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.497x | 3.50 | 0.0536% | 2,399,514 |
| 16k | 3.921x | 3.92 | 0.0601% | 2,140,331 |
| 32k | 4.309x | 4.31 | 0.0661% | 1,947,512 |
| 64k | 4.642x π | 4.64 | 0.0712% | 1,807,481 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Π¨Π»Π΅ΠΏΠ°ΠΊΠΎΠ²: Π¨Π»Π΅ΠΏΠ°ΠΊΠΎΠ² ΠΡΠ½ΠΎΠ»ΡΠ΄ ΠΠΈΠΊΠΎΠ»Π°ΠΉΠΎΠ²ΠΈΡ β ΡΡΡΠΎΡΠΈΠΊ. Π¨Π»Π΅ΠΏΠ°ΠΊΠΎΠ² ΠΠΈΠΊΠΎΠ»Π° Π‘ΡΠ΅ΠΏΠ°Π½ΠΎΠ²ΠΈΡ β Ρ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΡ Π»Π΅ ΠΏΠ° ΠΊΠΎΠ² : βΡ Π»Π΅ ΠΏΠ° ΠΊΠΎΠ² βΠ°Ρ ... (+17 more) |
27 |
| 16k | βΡ Π»Π΅ ΠΏΠ° ΠΊΠΎΠ² : βΡ Π»Π΅ ΠΏΠ° ΠΊΠΎΠ² βΠ°ΡΠ½ΠΎ ... (+15 more) |
25 |
| 32k | βΡΠ»Π΅ ΠΏΠ° ΠΊΠΎΠ² : βΡΠ»Π΅ ΠΏΠ° ΠΊΠΎΠ² βΠ°ΡΠ½ΠΎΠ»ΡΠ΄ βΠΌΠΈΠΊΠΎΠ»Π°ΠΉΠΎΠ²ΠΈΡ ββ ... (+11 more) |
21 |
| 64k | βΡΠ»Π΅ΠΏΠ°ΠΊΠΎΠ² : βΡΠ»Π΅ΠΏΠ°ΠΊΠΎΠ² βΠ°ΡΠ½ΠΎΠ»ΡΠ΄ βΠΌΠΈΠΊΠΎΠ»Π°ΠΉΠΎΠ²ΠΈΡ ββ βΡΡΡΠΎΡΠΈΠΊ . βΡΠ»Π΅ΠΏΠ°ΠΊΠΎΠ² βΠΌΠΈΠΊΠΎΠ»Π° ... (+5 more) |
15 |
Sample 2: Π‘Π΅Π»Π°: ΠΡΡΠ²ΡΡ β ΠΠΈΡΠ²ΡΡΠΊΠ° ΠΎΠ±Π»Π°ΡΡΡ, ΠΠ±ΡΡ
ΡΠ²ΡΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½ ΠΡΡΠ²ΡΡ β ΠΠΎΠ»ΡΠ°Π²ΡΡΠΊΠ° ΠΎΠ±Π»Π°ΡΡΡ, ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΡΠ΅Π»Π° : βΠ±Ρ ΡΠ² ΡΡ ββ βΠΊΠΈΡΠ²ΡΡΠΊΠ° βΠΎΠ±Π»Π°ΡΡΡ , βΠΎΠ±Ρ ... (+12 more) |
22 |
| 16k | βΡΠ΅Π»Π° : βΠ±Ρ ΡΠ² ΡΡ ββ βΠΊΠΈΡΠ²ΡΡΠΊΠ° βΠΎΠ±Π»Π°ΡΡΡ , βΠΎΠ±ΡΡ
ΡΠ²ΡΡΠΊΠΈΠΉ ... (+10 more) |
20 |
| 32k | βΡΠ΅Π»Π° : βΠ±Ρ ΡΠ²ΡΡ ββ βΠΊΠΈΡΠ²ΡΡΠΊΠ° βΠΎΠ±Π»Π°ΡΡΡ , βΠΎΠ±ΡΡ
ΡΠ²ΡΡΠΊΠΈΠΉ βΡΠ°ΠΉΠΎΠ½ ... (+8 more) |
18 |
| 64k | βΡΠ΅Π»Π° : βΠ±Ρ ΡΠ²ΡΡ ββ βΠΊΠΈΡΠ²ΡΡΠΊΠ° βΠΎΠ±Π»Π°ΡΡΡ , βΠΎΠ±ΡΡ
ΡΠ²ΡΡΠΊΠΈΠΉ βΡΠ°ΠΉΠΎΠ½ ... (+8 more) |
18 |
Sample 3: ΠΠΏΡΠΎΠ½ΡΠ½ΠΈ (ΠΠ°ΡΡΠ½Π½Π΅ΡΠ΄ΠΈ, ΠΡΡΡΠΎΠ²ΠΈΠ΄ΠΊΠΈ) β ΡΠ΅ ΠΏΡΠ΄ΡΠΎΠ΄ΠΈΠ½Π° ΠΆΡΠΊΡΠ² Π· ΡΠΎΠ΄ΠΈΠ½ΠΈ ΠΠΏΡΠΎΠ½ΡΠ΄ΠΈ (Apioni...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠ° ΠΏΡ ΠΎΠ½Ρ Π½ΠΈ β( Π½Π° ΡΡ Π½ Π½Π΅ Ρ ... (+27 more) |
37 |
| 16k | βΠ° ΠΏΡ ΠΎΠ½Ρ Π½ΠΈ β( Π½Π° ΡΡΠ½ Π½Π΅ ΡΠ΄ΠΈ , ... (+23 more) |
33 |
| 32k | βΠ° ΠΏΡ ΠΎΠ½Ρ Π½ΠΈ β( Π½Π° ΡΡΠ½ Π½Π΅ ΡΠ΄ΠΈ , ... (+22 more) |
32 |
| 64k | βΠ° ΠΏΡ ΠΎΠ½Ρ Π½ΠΈ β( Π½Π°ΡΡΠ½ Π½Π΅ ΡΠ΄ΠΈ , βΠ³ΡΡ ... (+19 more) |
29 |
Key Findings
- Best Compression: 64k achieves 4.642x compression
- Lowest UNK Rate: 8k with 0.0536% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 187,448 | 17.52 | 685,840 | 5.0% | 14.5% |
| 2-gram | Subword | 437 π | 8.77 | 13,081 | 55.4% | 97.6% |
| 3-gram | Word | 286,638 | 18.13 | 787,827 | 5.6% | 11.9% |
| 3-gram | Subword | 4,150 | 12.02 | 116,111 | 18.3% | 58.5% |
| 4-gram | Word | 426,525 | 18.70 | 1,132,759 | 6.5% | 12.0% |
| 4-gram | Subword | 25,826 | 14.66 | 714,146 | 8.4% | 27.8% |
| 5-gram | Word | 231,506 | 17.82 | 725,209 | 9.1% | 16.1% |
| 5-gram | Subword | 110,683 | 16.76 | 2,359,262 | 4.5% | 15.9% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Ρ ΡΠΎΡΡ |
39,132 |
| 2 | ΠΏΡΠ΄ ΡΠ°Ρ |
21,948 |
| 3 | ic Π² |
21,270 |
| 4 | Π° ΡΠ°ΠΊΠΎΠΆ |
20,792 |
| 5 | Π² ΡΠΊΡΠ°ΡΠ½Ρ |
18,087 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ic Π² Π±Π°Π·Ρ |
12,721 |
| 2 | ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ |
10,477 |
| 3 | Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ |
10,475 |
| 4 | Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ |
10,473 |
| 5 | Π΄ΠΎ Π½ Π΅ |
8,904 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ |
10,475 |
| 2 | ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ |
10,468 |
| 3 | ic Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ |
8,549 |
| 4 | Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic |
7,477 |
| 5 | Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic Π² |
6,124 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ |
10,468 |
| 2 | ic Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ |
8,549 |
| 3 | ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic |
7,477 |
| 4 | Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic Π² |
6,124 |
| 5 | Π±Π°Π·ΠΈ Π΄Π°Π½ΠΈΡ
ΠΏΡΠΎ ΠΎΠ± ΡΠΊΡΠΈ |
5,241 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ ΠΏ |
2,788,984 |
| 2 | Π° _ |
2,782,956 |
| 3 | _ Π² |
2,478,604 |
| 4 | , _ |
2,402,312 |
| 5 | . _ |
2,316,510 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ Π½ Π° |
1,039,254 |
| 2 | Ρ Ρ ΠΊ |
1,024,566 |
| 3 | _ ΠΏ Ρ |
870,352 |
| 4 | _ ΠΏ ΠΎ |
858,794 |
| 5 | Π½ Π° _ |
850,334 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΠΎ Π³ ΠΎ _ |
679,817 |
| 2 | Π½ Π½ Ρ _ |
490,022 |
| 3 | _ Π½ Π° _ |
413,243 |
| 4 | Ρ Ρ ΠΊ ΠΎ |
409,920 |
| 5 | _ ΠΏ Ρ ΠΎ |
378,210 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΠΊ Ρ Π° Ρ Π½ |
282,501 |
| 2 | Ρ ΠΊ Ρ Π° Ρ |
252,628 |
| 3 | Π΅ Π½ Π½ Ρ _ |
250,361 |
| 4 | _ Ρ ΠΊ Ρ Π° |
236,337 |
| 5 | Π½ ΠΎ Π³ ΠΎ _ |
219,776 |
Key Findings
- Best Perplexity: 2-gram (subword) with 437
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~16% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 1.0632 | 2.089 | 11.27 | 1,098,688 | 0.0% |
| 1 | Subword | 1.0573 | 2.081 | 7.85 | 5,267 | 0.0% |
| 2 | Word | 0.3016 | 1.233 | 1.83 | 12,375,104 | 69.8% |
| 2 | Subword | 0.8473 | 1.799 | 5.87 | 41,346 | 15.3% |
| 3 | Word | 0.0881 | 1.063 | 1.16 | 22,683,749 | 91.2% |
| 3 | Subword | 0.8543 | 1.808 | 4.91 | 242,807 | 14.6% |
| 4 | Word | 0.0277 π | 1.019 | 1.04 | 26,324,244 | 97.2% |
| 4 | Subword | 0.7559 | 1.689 | 3.63 | 1,193,273 | 24.4% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
Π² Π±Π°ΡΡΠΊΡΠ²ΡΡΠΊΠΈΠΉ Π΄ΡΠΌ Ρ ΠΉΠΎΠ³ΠΎ ΠΎΠΊΡΠ°ΡΠ½Π½ΠΈΠΌ ΠΌΠΎΡΠ΅ΠΌ ΠΏΡΠΎΡΠΎΠΊΠ°ΠΌΠΈ Π½Π°Π·Π²Π° ΠΌΠΎΠ²ΠΎΡ Π·Π° ΠΏΠ΅ΡΡΠ° ΡΠ°ΡΠ΄ΠΈΠ½ΡΠ½Π° Π² ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ 2Ρ ΠΏΠ΅ΡΡΠΎΠΌΡ ΡΡΡΡ Π· Π½ΠΈΡ 22 ΡΡΡΠ½Ρ Π·Π° Π½Π΅Π³Π°ΠΉΠ½Π΅ ΠΏΠ΅ΡΠ΅ΠΊΠΈΠ΄Π°Π½Π½Ρ Π΄ΠΎ Π° ΠΏΠΎ Π°Π±Π΄ΡΠ»Π»Π°Ρ Π°Π»Ρ Π°Π·Ρ Π°ΡΡ 4 ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π³ΠΎΠ»ΠΎΡ ΠΏΠ°Π½ΠΊ ΠΌΡΠ·ΠΈΠΊΠ°Π½ΡΠΈ Π½Π°ΡΠΊΠΎΠ²ΡΡ Π°ΡΡΡΠΎΠ½ΠΎΠΌΠΈ Π²Π²Π°ΠΆΠ°Π»ΠΈ Π΄Π»Ρ ΠΊΡΠ»ΡΠΊΠΎΡΡΡ Π·Π°Π³ΠΈΠ±Π»ΠΈΡ 95 82 ΡΡΡΠ±Ρ ΡΠ»...
Context Size 2:
Ρ ΡΠΎΡΡ ΡΡΠΈΠΏΠ΅Π½Π΄ΡΡ Ρ ΠΏΠΎΡΡΡΠΏΠΈΡΠΈ Ρ ΠΏΡΠ΄ΠΏΠΎΡΡΠ΄ΠΊΡΠ²Π°Π½Π½Ρ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΡ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ Π²ΠΏΠ΅ΡΡΠ΅ Π±ΡΠ»Π° Π²ΠΈΠ΄Π°Π½Π° 9 ΡΠ΅ΡΠΏΠ½Ρ Π² ΡΡΠΎΠ³ΠΎΠ΄...ΠΏΡΠ΄ ΡΠ°Ρ ΡΠΊΠΎΡ Π±ΡΠ»ΠΈ ΡΠ°ΠΌΠΎΠ΄Π΅ΡΠΆΠ°Π²ΡΡΠ²ΠΎ ΠΏΡΠ°Π²ΠΎΡΠ»Π°Π² Ρ ΠΎΡΡΡΡΠΉΠ½ΠΎΡ ΠΌΠΎΠ²ΠΎΡ Π±ΡΠ»Π° ΠΎΡΠΌΠ°Π½ΡΡΠΊΠ° ΠΏΠΎΡΠ°ΡΠΊΠΎΠ²Π° ΠΎΡΠ²ΡΡΠ° Ρ ΠΎΠ΄Π½ΡΡ...ic Π² Π±Π°Π·Ρ vizier ic Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic Π² Π±Π°Π·Ρ vizier ic Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ
Context Size 3:
ic Π² Π±Π°Π·Ρ simbad ic Π² Π±Π°Π·Ρ nasa extragalactic database Π±Π°Π·ΠΈ Π΄Π°Π½ΠΈΡ ΠΏΡΠΎ ΠΎΠ± ΡΠΊΡΠΈ ngc ic icΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ΠΏΠ΅ΡΠ΅Π²ΡΡΠ΅Π½Π° ΡΠ½ΡΠΎΡΠΌΠ°ΡΡΡ ΠΏΡΠΎ ic ic Π² Π±Π°Π·Ρ nasa extragalactic d...Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic Π² ΠΎΡΠΈΠ³ΡΠ½...
Context Size 4:
Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic 541 Π² ΠΎΡ...ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic 260 Π² Π±Π°Π·Ρ simbad ic Π² Π±Π°Π·Ρ vizier ic Π² Π±Π°Π·Ρ nasa extrag...ic Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ic Π² ΠΎΡΠΈΠ³ΡΠ½Π°Π»ΡΠ½ΠΎΠΌΡ Π½ΠΎΠ²ΠΎΠΌΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠΌΡ ΠΊΠ°ΡΠ°Π»ΠΎΠ·Ρ ΠΏΠ΅ΡΠ΅Π²ΡΡΠ΅...
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_ΠΉ_β_Π·Π°Ρ ΠΎΠ΄Ρ_Π΄Π°_Π°ΠΎΠ½ΠΈΠ½Π΄ΠΈΠ½Π½ΠΈΠ²_ΡΡΠΈ_Π·Π°_ΡΡΡΠΈ_Π²_Π±ΡΡ_ΠΌΡΡ
Context Size 2:
_ΠΏΡΠ°Π·ΠΈΠΈ_5_ΠΌΠ°Ρ ΠΎΠ»_Π½Π°_Ρ_Π±ΠΎΠ²Π°ΡΠΊΡΠ°ΠΆΠ°ΠΌ_Π²_Π²ΡΠ΄Π½Ρ_Π²ΠΈΠΉΡΠΎΠΌΠΈ_Π»Π°
Context Size 3:
_Π½Π°Π½Π½Ρ_Ρ_ΡΡΠ½ΡΡΠΈ_ΡΠΌΡΡΠΊΠ΅_Π½ΠΎΠ±ΡΠΉΠ½ΠΎ-ΠΆΠΎΠ·Π΅ΠΌ_ΠΏΡΠ΅Π½Π½Ρ_ΠΎΠ΄ΠΈΠ»Π°Π½Π·Π΅Π½Ρ
Context Size 4:
ΠΎΠ³ΠΎ_ΡΠ»ΡΠ΄Π½ΠΈΡ _ΠΏΡΠΈΠΌΡΡΠΎΠ½Π½Ρ_Π²Π΅ΡΡ Π½Π΅Ρ_ΡΠ΅ΡΠ½ΠΈΡΠΎ_Π½Π°_ΡΠ°ΠΊΡ,_ΡΠΎΡΠ³ΠΎΠ²Π΅_Π²
Key Findings
- Best Predictability: Context-4 (word) with 97.2% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (1,193,273 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 524,715 |
| Total Tokens | 29,104,691 |
| Mean Frequency | 55.47 |
| Median Frequency | 4 |
| Frequency Std Dev | 1788.64 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | Π² | 584,423 |
| 2 | Ρ | 509,046 |
| 3 | Ρ | 475,294 |
| 4 | Π½Π° | 421,086 |
| 5 | Π· | 398,175 |
| 6 | ΡΠ° | 338,290 |
| 7 | Π΄ΠΎ | 243,692 |
| 8 | ΡΠΎ | 178,466 |
| 9 | ΡΠΎΠΊΡ | 157,886 |
| 10 | Π·Π° | 156,732 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | ΠΏΠ°Π½ΡΡΡΠ° | 2 |
| 2 | ΡΠΎΜΡΠ±Π°Ρ | 2 |
| 3 | ΡΡΠ±Π΅ΜΠ»Ρ | 2 |
| 4 | ΠΊΠ°ΡΠ°ΡΡ Π΅ΠΉ | 2 |
| 5 | Π°Π·ΠΎΠΉ | 2 |
| 6 | ΠΏΡΠΈΡΠΊΠΎΠΉ | 2 |
| 7 | Π³Π°Π΄Π΅ΠΉΡΡΠΊΠΎΠΌΡ | 2 |
| 8 | ΡΠ΅Π·Π°Π½ | 2 |
| 9 | ΠΊΠΎΠ½Π΅Π·Π°Π²ΠΎΠ΄ΡΡΠ²Π° | 2 |
| 10 | ΡΡΠ½Π΅Π»ΡΠ½ΠΈΠΊΠΎΠ²Π° | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 0.8995 |
| RΒ² (Goodness of Fit) | 0.997133 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 24.5% |
| Top 1,000 | 44.1% |
| Top 5,000 | 62.3% |
| Top 10,000 | 70.6% |
Key Findings
- Zipf Compliance: RΒ²=0.9971 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 24.5% of corpus
- Long Tail: 514,715 words needed for remaining 29.4% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.7906 π | 0.3688 | N/A | N/A |
| mono_64d | 64 | 0.7645 | 0.2903 | N/A | N/A |
| mono_128d | 128 | 0.6859 | 0.2083 | N/A | N/A |
| aligned_32d | 32 | 0.7906 | 0.3638 | 0.0600 | 0.2820 |
| aligned_64d | 64 | 0.7645 | 0.2932 | 0.1320 | 0.4220 |
| aligned_128d | 128 | 0.6859 | 0.2081 | 0.1620 | 0.5000 |
Key Findings
- Best Isotropy: mono_32d with 0.7906 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.2887. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 16.2% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | 0.010 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-Ρ |
ΡΠ΅ΡΡΡΠΈ, ΡΠ»ΠΎΠ²Π½ΠΈΠΊΠ°ΡΡΡΠ²ΠΎ, ΡΡΡΠΉΠΎΠΊ |
-ΠΊ |
ΠΊΠ»ΠΈΠ½ΠΎΠΏΠΈΡΠ½ΡΠΉ, ΠΊΡΠΏΡΡΡΠ½ΠΊΠΎ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΡΡΠΎΠ³ΠΎ |
-ΠΌΠ° |
ΠΌΠ°ΠΊΠ°ΡΠΎΠ½ΡΡΠ½Ρ, ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ·ΠΌΡ, ΠΌΠ°ΠΊΠ΅Π΄ΠΎΠ½ΡΠ½ΠΈΠ½ |
-Π° |
Π°ΠΊΡΡΠΎΠ½Π΅ΡΡΠ², Π°Π΄Π²ΠΎΠΊΠ°ΡΠ°ΠΌΠΈ, Π°ΡΠΌΠ°Π½ΡΠ·ΠΌ |
-ΠΊΠΎ |
ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΡΡΠΎΠ³ΠΎ, ΠΊΠΎΡΡΠΎΡΠΈΡΠΈ, ΠΊΠΎΠ½Π³ΡΠ΅ΡΠΌΠ΅Π½ |
-ΠΊΠ° |
ΠΊΠ°Π»ΡΠΊΡΡΡΠΈ, ΠΊΠ°ΡΠ°Π³Π°Π½Π΄ΠΈΠ½ΡΡΠΊΠΎΡ, ΠΊΠ°ΡΡΠ΅Π½ΠΊΠΎ |
-Π² |
Π²ΠΎΠ»Π»Ρ, Π²ΠΈΠ³ΠΈΠ½ΠΎΠΌ, Π²ΠΈΠΌΠ°Π³Π°ΡΡΠΈ |
-ΠΏΠΎ |
ΠΏΠΎΠΏΡΠ»ΡΡΡΡ, ΠΏΠΎΠΊΠ»ΠΈΠΊΠΈ, ΠΏΠΎΠ΄Π°Π½Π½Ρ |
Productive Suffixes
| Suffix | Examples |
|---|---|
-Π° |
Π±Π΅Ρ Π΅ΡΡΠ²ΠΊΠ°, ΡΠ΄Π΅ΡΠ½Π°, ΡΠΈΠ³ΠΈΡΠΈΠ½ΡΡΠΊΠ° |
-ΠΈΠΉ |
Π»Π΅ΡΡΠ½ΡΡΠΊΠΈΠΉ, Π½Π΅ΡΠ΅Π½ΡΡΠΎΠ²Π°Π½ΠΈΠΉ, ΡΡΠΈΠ΄Π΅Π½ΡΡΠΊΠΈΠΉ |
-ΠΈ |
ΠΏΡΠΈΡΠΏΠ°Π»ΠΈ, ΠΌΡΠ»ΡΠΉΠΎΠ½Π΅ΡΠΊΠΈ, ΡΠ΅ΡΡΡΠΈ |
-ΠΎ |
ΠΊΡΠΏΡΡΡΠ½ΠΊΠΎ, ΡΠ»ΠΎΠ²Π½ΠΈΠΊΠ°ΡΡΡΠ²ΠΎ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΡΡΠΎΠ³ΠΎ |
-ΠΉ |
ΠΊΠ»ΠΈΠ½ΠΎΠΏΠΈΡΠ½ΡΠΉ, Π»Π΅ΡΡΠ½ΡΡΠΊΠΈΠΉ, Π½Π΅ΡΠ΅Π½ΡΡΠΎΠ²Π°Π½ΠΈΠΉ |
-Ρ |
ΠΌΡΠ»ΡΠΌΠ΅ΡΡΡ, ΡΠ΅ΡΠ²ΠΎΠ½ΡΡΡ, ΠΎΡΡΡΠ½Ρ |
-Π³ΠΎ |
ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΡΡΠΎΠ³ΠΎ, Π±Π°ΠΊΡΠ΅ΡΡΠΉΠ½ΠΎΠ³ΠΎ, ΠΆΠ°ΡΡΡΠ²Π»ΠΈΠ²ΠΎΠ³ΠΎ |
-ΠΌ |
Π²ΠΈΠ³ΠΈΠ½ΠΎΠΌ, Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΈΠΌ, ΠΌΠ°ΠΊΠ΅Π΄ΠΎΠ½ΡΡΠΊΠΈΠΌ |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
Π°ΡΡΡ |
2.47x | 104 contexts | Π΄Π°ΡΡΡ, Π»Π°ΡΡΡ, ΠΌΠ°ΡΡΡ |
ΡΠ²Π°Π» |
1.86x | 304 contexts | ΡΡΠ²Π°Π», ΡΡΠ²Π°Π»Ρ, Π±ΡΠ²Π°Π»ΠΎ |
ΡΠΊΠΎΠ³ |
2.42x | 55 contexts | ΡΡΠΊΠΎΠ³ΠΎ, ΡΡΡΠΊΠΎΠ³ΠΎ, ΡΡΡΠΊΠΎΠ³ΠΎ |
Π°Π½Π½Ρ |
1.84x | 137 contexts | ΠΏΠ°Π½Π½Ρ, Π²Π°Π½Π½Ρ, ΡΠ°Π½Π½Ρ |
ΡΠΊΠΈΠΉ |
2.15x | 58 contexts | ΡΡΠΊΠΈΠΉ, ΡΡΠΊΠΈΠΉ, ΡΡΡΠΊΠΈΠΉ |
ΡΡΠΊΠΈ |
1.41x | 426 contexts | ΡΡΠΊΠΈΠΉ, ΡΡΡΠΊΠΈΠΉ, Π»Π΅ΡΡΠΊΠΈ |
Π½ΡΡΡ |
1.62x | 185 contexts | Π½ΡΡΡΡ, ΡΠ½ΡΡΡΡ, Π½ΡΡΡΡΡ |
Π»Π΅Π½Π½ |
1.66x | 160 contexts | Π»Π΅Π½Π½Ρ, Π»Π΅Π½Π½Ρ, Π³Π»Π΅Π½Π½ |
ΡΡΡΡ |
2.55x | 26 contexts | ΡΡΡΡΡ, ΡΡΡΡΡΡΡ, Π΄ΡΡΡΡΡΡ |
ΡΠΊΠΎΡ |
2.50x | 27 contexts | ΡΡΠΊΠΎΡ, ΡΡΡΠΊΠΎΡ, ΡΠΎΡΡΠΊΠΎΡ |
ΡΠΉΡΡ |
1.47x | 273 contexts | ΡΠΊΡΠΉΡΡ, Π²ΡΠΉΡΡΠΊ, Π±ΡΠΉΡΡΠΊ |
ΠΉΡΡΠΊ |
1.51x | 206 contexts | ΡΠΉΡΡΠΊ, ΡΠΉΡΡΠΊΠ°, ΡΠ°ΠΉΡΡΠΊ |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-ΠΏ |
-ΠΈ |
72 words | ΠΏΠΎΡΡΠ°ΡΠ°ΡΡΠΈ, ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΈ |
-Ρ |
-Π° |
69 words | ΡΠΏΠΎΠ²ΡΠ΄Π½ΠΈΠΊΠ°, ΡΡΡΡΠΌΠΎΡΠΊΠ° |
-ΠΊ |
-Π° |
68 words | ΠΊΠ°ΡΠ°, ΠΊΠΎΠ·Π»ΡΠ²ΡΡΠΊΠ° |
-ΠΏ |
-Π° |
65 words | ΠΏΡΠΎΠΏΠΈΡΠ½Π°, ΠΏΠ΅ΡΡΠΎΠ²ΡΡΠΊΠ° |
-Ρ |
-ΠΉ |
65 words | ΡΡΡΠ°Π²ΡΡΠΊΠΈΠΉ, ΡΠΊΠ»ΠΈΡΠΎΡΠΎΠ²ΡΠΊΠΈΠΉ |
-Ρ |
-ΠΈ |
58 words | ΡΠΊΡΠΈΠΏΠ½ΠΈΠΊΠΈ, ΡΡΠΊΡΠΏΠ½ΠΎΡΡΡΠΌΠΈ |
-Π² |
-ΠΈ |
57 words | Π²ΠΈΡΡΠ°ΡΠ°ΡΠΈ, Π²Π·Π°ΡΠΌΠΎΠ²ΠΈΠ³ΡΠ΄Π½ΠΈΠΌΠΈ |
-ΠΊ |
-ΠΉ |
55 words | ΠΊΠΈΡΠΌΠ°Π½ΠΎΠ²ΡΡΠΊΠΈΠΉ, ΠΊΠ°ΡΠΏΠ°ΡΡΠΊΡΠΉ |
-ΠΏ |
-Ρ |
55 words | ΠΏΠΎΠ»ΡΠΌΠΎΡΡΠ½Ρ, ΠΏΠ°Π»Π΅Π°ΡΠΊΡΠΈΡΡ |
-ΠΊ |
-ΠΈ |
54 words | ΠΊΠ²Π°ΡΠΊΠ°ΠΌΠΈ, ΠΊΡΠΎΠΊΠ°ΠΌΠΈ |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| Π½Π°ΡΠΎΠ΄ΠΈΠ»Π°ΡΡ | Π½Π°ΡΠΎΠ΄ΠΈΠ»-Π°-ΡΡ |
7.5 | Π° |
| ΠΏΠΎΡΠ»ΡΠ΄ΠΎΠ²Π½ΠΈΠΊΠ°ΠΌΠΈ | ΠΏΠΎΡΠ»ΡΠ΄ΠΎΠ²Π½ΠΈ-ΠΊΠ°-ΠΌΠΈ |
7.5 | ΠΊΠ° |
| ΠΊΡΠ½ΠΎΡΡΡΡΡΠΊΠ°Ρ | ΠΊΡΠ½ΠΎΡΡΡΡΡ-ΠΊΠ°-Ρ
|
7.5 | ΠΊΠ° |
| ΡΠ°Π»ΡΡΠΈΠ²ΠΈΡ | ΡΠ°Π»ΡΡΠΈ-Π²-ΠΈΡ
|
7.5 | Π² |
| Π·Π°ΡΠΎΠ±ΡΡΠΊΠ°ΠΌΠΈ | Π·Π°ΡΠΎΠ±ΡΡ-ΠΊΠ°-ΠΌΠΈ |
7.5 | ΠΊΠ° |
| ΡΠ΅ΠΉΡΠΊΡΠΊΡΡ | ΡΠ΅ΠΉΡΠΊΡ-ΠΊΡ-Ρ |
7.5 | ΠΊΡ |
| ΡΠ²ΡΡΠ΅Π½ΠΈΠΊΠ°ΠΌΠΈ | ΡΠ²ΡΡΠ΅Π½ΠΈ-ΠΊΠ°-ΠΌΠΈ |
7.5 | ΠΊΠ° |
| ΠΊΡΠΎΠ½ΡΠΎΠ²ΡΠΊΠ°Ρ | ΠΊΡΠΎΠ½ΡΠΎΠ²Ρ-ΠΊΠ°-Ρ |
7.5 | ΠΊΠ° |
| ΠΏΡΠ°Π²ΠΈΠ»Π°ΠΌΠΈ | ΠΏΡΠ°Π²ΠΈΠ»-Π°-ΠΌΠΈ |
7.5 | Π° |
| ΠΌΠ΅ΡΠΈΠ΄ΡΠ°Π½Ρ | ΠΌΠ΅ΡΠΈΠ΄Ρ-Π°-Π½Ρ |
7.5 | Π° |
| ΡΠΎΡΡΠ°Π»ΡΠ·ΠΌΠΎΠ²Ρ | ΡΠΎΡΡΠ°Π»ΡΠ·ΠΌ-ΠΎ-Π²Ρ |
7.5 | ΠΎ |
| ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ΅ | ΠΏΡΠΎΠ³ΡΠ°ΠΌ-ΠΌ-Π΅ |
7.5 | ΠΌ |
| ΡΠ½ΡΠ²Π΅ΡΡΠ°ΠΌΡ | ΡΠ½ΡΠ²Π΅ΡΡΠ°-ΠΌ-Ρ |
7.5 | ΠΌ |
| Π°Π²ΡΠΎΡΠ»ΡΡ Π°ΠΌΠΈ | Π°Π²ΡΠΎΡΠ»ΡΡ
-Π°-ΠΌΠΈ |
7.5 | Π° |
| Π°Π±ΡΠ°Π·ΠΈΠ²Π½ΠΎΠ³ΠΎ | Π°Π±ΡΠ°Π·ΠΈΠ²-Π½ΠΎ-Π³ΠΎ |
6.0 | Π°Π±ΡΠ°Π·ΠΈΠ² |
6.6 Linguistic Interpretation
Automated Insight: The language Ukrainian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.64x) |
| N-gram | 2-gram | Lowest perplexity (437) |
| Markov | Context-4 | Highest predictability (97.2%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-11 06:57:52



















