Zen Coder Flash ⚡
Overview
Zen Coder Flash is the flagship code-focused model in the Zen AI family. Built on GLM-4.7-Flash's cutting-edge Mixture of Experts architecture, it delivers frontier coding performance with practical efficiency.
| Attribute | Value |
|---|---|
| Parameters | 31B total / 3B active (MoE) |
| Context Length | 131,072 tokens |
| Base Model | GLM-4.7-Flash |
| License | MIT |
| Languages | 100+ programming languages |
Why Zen Coder Flash?
- 59.2% SWE-bench vs 22% Qwen3-30B - nearly 3x better at real coding tasks
- Efficient MoE: 31B params but only 3B active per token
- 131K context: Handle entire codebases in a single prompt
- Native tool calling: Built-in function execution support
- Reasoning mode: Extended chain-of-thought for complex problems
Performance
| Benchmark | Score | vs Qwen3-30B |
|---|---|---|
| SWE-bench Verified | 59.2% | +37.2% (2.7x) |
| AIME 2025 | 91.6% | +6.6% |
| GPQA | 75.2% | +1.8% |
| τ²-Bench | 79.5% | +30.5% |
Zen Coder Family
| Tier | Model | Parameters | Active | Use Case |
|---|---|---|---|---|
| Small | zen-coder-4b | 4B | 4B | Edge/mobile |
| Flagship | zen-coder-flash | 31B MoE | 3B | Balanced |
| Max | zen-max | 671B MoE | 14B | Frontier |
Quick Start
Transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "zenlm/zen-coder-flash"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [{"role": "user", "content": "Write a Python function to find all prime numbers up to n using the Sieve of Eratosthenes"}]
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(response)
vLLM (Recommended for Production)
vllm serve zenlm/zen-coder-flash \
--tensor-parallel-size 4 \
--speculative-config.method mtp \
--speculative-config.num_speculative_tokens 1 \
--tool-call-parser glm47 \
--reasoning-parser glm45 \
--enable-auto-tool-choice
SGLang
python -m sglang.launch_server \
--model-path zenlm/zen-coder-flash \
--tp-size 4 \
--tool-call-parser glm47 \
--reasoning-parser glm45 \
--speculative-algorithm EAGLE \
--speculative-num-steps 3
MLX (Apple Silicon)
from mlx_lm import load, generate
model, tokenizer = load("zenlm/zen-coder-flash")
response = generate(model, tokenizer, prompt="Write a Rust function for binary search", max_tokens=256)
print(response)
Capabilities
Code Generation
- 100+ programming languages
- Framework-aware completions
- Test generation
- Documentation generation
Debugging & Analysis
- Bug detection and fixes
- Code review
- Performance optimization
- Security analysis
Software Engineering
- Architecture design
- API design
- Refactoring suggestions
- Migration assistance
Tool Calling
# Native function calling support
tools = [
{
"type": "function",
"function": {
"name": "run_tests",
"description": "Run test suite",
"parameters": {"type": "object", "properties": {}}
}
}
]
Identity
I am Zen Coder Flash, the flagship code-focused model in the Zen AI family. I combine GLM-4.7's cutting-edge MoE architecture with Zen's philosophy of clarity and efficiency. With 31 billion parameters (only 3B active per token) and 131K context, I deliver frontier coding capability that's practical to deploy.
Training
Zen Coder Flash is built through identity fine-tuning on GLM-4.7-Flash using MLX LoRA on Apple Silicon. The training emphasizes:
- Zen identity and persona
- Code-focused instruction following
- Tool calling capabilities
- Extended reasoning patterns
Citation
@misc{zen-coder-flash-2025,
title={Zen Coder Flash: Efficient Frontier Code Generation},
author={Hanzo AI},
year={2025},
url={https://huggingface.co/zenlm/zen-coder-flash}
}
Links
- Website: zenlm.org
- GitHub: zenlm/zen
- Base Model: GLM-4.7-Flash
- Organization: Hanzo AI
License
MIT License - inherited from GLM-4.7-Flash base model.
Zen AI: Clarity Through Intelligence
- Downloads last month
- 110
Model tree for zenlm/zen-coder-flash
Base model
zai-org/GLM-4.7-FlashSpace using zenlm/zen-coder-flash 1
Evaluation results
- SWE-bench Verified on SWE-bench Verifiedself-reported59.200
- AIME 2025 on AIME 2025self-reported91.600