PredictiveManish's picture
Update README.md
a19c08c verified
---
license: mit
pipeline_tag: object-detection
tags:
- tensorflow
- keras
- opencv
- wall-crack-detection
- real-time
- mobile
datasets: []
---
# Wall Crack Detection Model
This project uses a **deep learning model** to detect cracks in walls using **real-time video feed** from a mobile phone camera.
It is built with **TensorFlow**, **Keras**, and **OpenCV**.
---
## Model Overview
- **Model Type:** Object Detection (Binary – Crack / No Crack)
- **Framework:** TensorFlow / Keras
- **File:** `crack_detector.h5`
- **Input:** Image frame (from video feed or camera)
- **Output:** Crack detection result (with bounding boxes or classification)
---
## Project Structure
```bash
project/
β”‚-- crack_detector.h5 # Trained model file
β”‚-- main.py # Real-time detection script
β”‚-- concrete_data/ # Dataset folder (if training from scratch)
β”‚ β”œβ”€β”€ train/
β”‚ β”‚ β”œβ”€β”€ Positive/
β”‚ β”‚ └── Negative/
β”‚ └── val/
β”‚ β”œβ”€β”€ Positive/
β”‚ └── Negative/
β”‚-- detection_log.csv # Optional log for predictions
β”‚-- README.md
---
## Requirements
- Python 3.10+
- TensorFlow 2.x
- OpenCV
- NumPy
### Install Dependencies
```bash
pip install tensorflow opencv-python numpy
```
For Best Results, create a virtual Environment:
```
Using Conda:
conda --version
conda create --name wallcrack-env python=3.10
conda activate wallcrack-env
pip install tensorflow opencv-python numpy
```
### Usage
Set up DroidCam IP or any camera stream URL in main.py
Run the detection script:
```
python main.py
```
The model will process live video feed and detect cracks in walls in real time.
### Notes
If you want to retrain, use images in the concrete_data folder.
The detection_log.csv file can store timestamped predictions for later analysis.