name
string
module
string
type
string
Std.ExtDTreeMap.minKey!_insert_le_self
Std.Data.ExtDTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.ExtDTreeMap Ξ± Ξ² cmp} [inst : Std.TransCmp cmp] [inst_1 : Inhabited Ξ±] {k : Ξ±} {v : Ξ² k}, (cmp (t.insert k v).minKey! k).isLE = true
Lean.Lsp.SemanticTokenModifier.declaration.elim
Lean.Data.Lsp.LanguageFeatures
{motive : Lean.Lsp.SemanticTokenModifier β†’ Sort u} β†’ (t : Lean.Lsp.SemanticTokenModifier) β†’ t.ctorIdx = 0 β†’ motive Lean.Lsp.SemanticTokenModifier.declaration β†’ motive t
Fin.rev_sub
Mathlib.Algebra.Group.Fin.Basic
βˆ€ {n : β„•} (a b : Fin n), (a - b).rev = a.rev + b
Finset.sum_eq_zero
Mathlib.Algebra.BigOperators.Group.Finset.Basic
βˆ€ {ΞΉ : Type u_1} {M : Type u_4} {s : Finset ΞΉ} [inst : AddCommMonoid M] {f : ΞΉ β†’ M}, (βˆ€ x ∈ s, f x = 0) β†’ βˆ‘ x ∈ s, f x = 0
TopModuleCat.withModuleTopologyAdj._proof_1
Mathlib.Algebra.Category.ModuleCat.Topology.Basic
βˆ€ (R : Type u_2) [inst : Ring R] [inst_1 : TopologicalSpace R] ⦃X Y : TopModuleCat R⦄ (f : X ⟢ Y), CategoryTheory.CategoryStruct.comp (((CategoryTheory.forgetβ‚‚ (TopModuleCat R) (ModuleCat R)).comp (TopModuleCat.withModuleTopology R)).map f) (TopModuleCat.ofHom { toLinearMap := LinearMap.id, cont := β‹― }) = CategoryTheory.CategoryStruct.comp (TopModuleCat.ofHom { toLinearMap := LinearMap.id, cont := β‹― }) ((CategoryTheory.Functor.id (TopModuleCat R)).map f)
_private.Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.NormalForms.0.SimplexCategoryGenRel.IsAdmissible.cons._proof_1_3
Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.NormalForms
βˆ€ (head : β„•) (tail : List β„•), 1 ≀ (head :: tail).length β†’ 0 < (head :: tail).length
isOpen.dynEntourage
Mathlib.Dynamics.TopologicalEntropy.DynamicalEntourage
βˆ€ {X : Type u_1} {U : SetRel X X} [inst : TopologicalSpace X] {T : X β†’ X}, Continuous T β†’ IsOpen U β†’ βˆ€ (n : β„•), IsOpen (Dynamics.dynEntourage T U n)
ContinuousLinearMap
Mathlib.Topology.Algebra.Module.LinearMap
{R : Type u_1} β†’ {S : Type u_2} β†’ [inst : Semiring R] β†’ [inst_1 : Semiring S] β†’ (R β†’+* S) β†’ (M : Type u_3) β†’ [TopologicalSpace M] β†’ [inst_3 : AddCommMonoid M] β†’ (Mβ‚‚ : Type u_4) β†’ [TopologicalSpace Mβ‚‚] β†’ [inst_5 : AddCommMonoid Mβ‚‚] β†’ [Module R M] β†’ [Module S Mβ‚‚] β†’ Type (max u_3 u_4)
Std.Rco.instForIn'InferInstanceMembershipOfLawfulUpwardEnumerableOfLawfulUpwardEnumerableLEOfLawfulUpwardEnumerableLTOfMonadOfFiniteIteratorId.congr_simp
Init.Data.Range.Polymorphic.Lemmas
βˆ€ {Ξ± : Type u} {m : Type u β†’ Type u_1} [inst : Std.PRange.UpwardEnumerable Ξ±] [inst_1 : LE Ξ±] [inst_2 : LT Ξ±] [inst_3 : DecidableLT Ξ±] [inst_4 : Std.PRange.LawfulUpwardEnumerable Ξ±] [inst_5 : Std.PRange.LawfulUpwardEnumerableLE Ξ±] [inst_6 : Std.PRange.LawfulUpwardEnumerableLT Ξ±] [inst_7 : Monad m] [inst_8 : Std.Iterators.Finite (Std.Rxo.Iterator Ξ±) Id], Std.Rco.instForIn'InferInstanceMembershipOfLawfulUpwardEnumerableOfLawfulUpwardEnumerableLEOfLawfulUpwardEnumerableLTOfMonadOfFiniteIteratorId = Std.Rco.instForIn'InferInstanceMembershipOfLawfulUpwardEnumerableOfLawfulUpwardEnumerableLEOfLawfulUpwardEnumerableLTOfMonadOfFiniteIteratorId
Relation.ReflGen.mono
Mathlib.Logic.Relation
βˆ€ {Ξ± : Type u_1} {r p : Ξ± β†’ Ξ± β†’ Prop}, (βˆ€ (a b : Ξ±), r a b β†’ p a b) β†’ βˆ€ {a b : Ξ±}, Relation.ReflGen r a b β†’ Relation.ReflGen p a b
AddSubgroup.map_injective
Mathlib.Algebra.Group.Subgroup.Ker
βˆ€ {G : Type u_1} [inst : AddGroup G] {N : Type u_5} [inst_1 : AddGroup N] {f : G β†’+ N}, Function.Injective ⇑f β†’ Function.Injective (AddSubgroup.map f)
MonoidHom.toHomPerm_apply_symm_apply
Mathlib.Algebra.Group.End
βˆ€ {Ξ± : Type u_4} {G : Type u_7} [inst : Group G] (f : G β†’* Function.End Ξ±) (a : G), ⇑(Equiv.symm (f.toHomPerm a)) = ↑(f.toHomUnits a)⁻¹
Lean.Grind.CommRing.Expr.pow.inj
Init.Grind.Ring.CommSolver
βˆ€ {a : Lean.Grind.CommRing.Expr} {k : β„•} {a_1 : Lean.Grind.CommRing.Expr} {k_1 : β„•}, a.pow k = a_1.pow k_1 β†’ a = a_1 ∧ k = k_1
PresheafOfModules.toPresheaf._proof_3
Mathlib.Algebra.Category.ModuleCat.Presheaf
βˆ€ {C : Type u_3} [inst : CategoryTheory.Category.{u_2, u_3} C] (R : CategoryTheory.Functor Cα΅’α΅– RingCat) (X : PresheafOfModules R), { app := fun X_1 => AddCommGrpCat.ofHom (AddMonoidHom.mk' ⇑(CategoryTheory.ConcreteCategory.hom ((CategoryTheory.CategoryStruct.id X).app X_1)) β‹―), naturality := β‹― } = CategoryTheory.CategoryStruct.id X.presheaf
CategoryTheory.MonadHom.app_ΞΌ_assoc
Mathlib.CategoryTheory.Monad.Basic
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {T₁ Tβ‚‚ : CategoryTheory.Monad C} (self : CategoryTheory.MonadHom T₁ Tβ‚‚) (X : C) {Z : C} (h : Tβ‚‚.obj X ⟢ Z), CategoryTheory.CategoryStruct.comp (T₁.ΞΌ.app X) (CategoryTheory.CategoryStruct.comp (self.app X) h) = CategoryTheory.CategoryStruct.comp (T₁.map (self.app X)) (CategoryTheory.CategoryStruct.comp (self.app (Tβ‚‚.obj X)) (CategoryTheory.CategoryStruct.comp (Tβ‚‚.ΞΌ.app X) h))
_private.Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unital.0._auto_500
Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unital
Lean.Syntax
_private.Mathlib.MeasureTheory.Measure.Map.0.MeasurableEquiv.map_ae._simp_1_1
Mathlib.MeasureTheory.Measure.Map
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Filter Ξ±} {m : Ξ± β†’ Ξ²} {t : Set Ξ²}, (t ∈ Filter.map m f) = (m ⁻¹' t ∈ f)
Lean.Widget.GetWidgetSourceParams.mk.injEq
Lean.Widget.UserWidget
βˆ€ (hash : UInt64) (pos : Lean.Lsp.Position) (hash_1 : UInt64) (pos_1 : Lean.Lsp.Position), ({ hash := hash, pos := pos } = { hash := hash_1, pos := pos_1 }) = (hash = hash_1 ∧ pos = pos_1)
MeasurableEmbedding.schroederBernstein._proof_3
Mathlib.MeasureTheory.MeasurableSpace.Embedding
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Ξ± β†’ Ξ²} {g : Ξ² β†’ Ξ±} (A : Set Ξ±), (fun A => (g '' (f '' A)ᢜ)ᢜ) A = A β†’ Aᢜ = g '' (f '' A)ᢜ
Rep.coindResAdjunction_counit_app
Mathlib.RepresentationTheory.FiniteIndex
βˆ€ {k G : Type u} [inst : CommRing k] [inst_1 : Group G] {S : Subgroup G} [inst_2 : DecidableRel ⇑(QuotientGroup.rightRel S)] [inst_3 : S.FiniteIndex] (B : Rep k G), (Rep.coindResAdjunction k S).counit.app B = CategoryTheory.CategoryStruct.comp (Rep.indCoindIso ((Action.res (ModuleCat k) S.subtype).obj B)).inv ((Rep.indResAdjunction k S.subtype).counit.app B)
IsPreconnected.intermediate_value_Ioc
Mathlib.Topology.Order.IntermediateValue
βˆ€ {X : Type u} {Ξ± : Type v} [inst : TopologicalSpace X] [inst_1 : LinearOrder Ξ±] [inst_2 : TopologicalSpace Ξ±] [OrderClosedTopology Ξ±] {s : Set X}, IsPreconnected s β†’ βˆ€ {a : X} {l : Filter X}, a ∈ s β†’ βˆ€ [l.NeBot], l ≀ Filter.principal s β†’ βˆ€ {f : X β†’ Ξ±}, ContinuousOn f s β†’ βˆ€ {v : Ξ±}, Filter.Tendsto f l (nhds v) β†’ Set.Ioc v (f a) βŠ† f '' s
CochainComplex.ConnectData.d_sub_one_zero
Mathlib.Algebra.Homology.Embedding.Connect
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] {K : ChainComplex C β„•} {L : CochainComplex C β„•} (h : CochainComplex.ConnectData K L), h.d (-1) 0 = h.dβ‚€
Set.injOn_iff_injective
Mathlib.Data.Set.Restrict
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {s : Set Ξ±} {f : Ξ± β†’ Ξ²}, Set.InjOn f s ↔ Function.Injective (s.restrict f)
Turing.TM2to1.stmtStRec._unsafe_rec
Mathlib.Computability.TuringMachine
{K : Type u_1} β†’ {Ξ“ : K β†’ Type u_2} β†’ {Ξ› : Type u_3} β†’ {Οƒ : Type u_4} β†’ {motive : Turing.TM2.Stmt Ξ“ Ξ› Οƒ β†’ Sort l} β†’ ((k : K) β†’ (s : Turing.TM2to1.StAct K Ξ“ Οƒ k) β†’ (q : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ motive q β†’ motive (Turing.TM2to1.stRun s q)) β†’ ((a : Οƒ β†’ Οƒ) β†’ (q : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ motive q β†’ motive (Turing.TM2.Stmt.load a q)) β†’ ((p : Οƒ β†’ Bool) β†’ (q₁ qβ‚‚ : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ motive q₁ β†’ motive qβ‚‚ β†’ motive (Turing.TM2.Stmt.branch p q₁ qβ‚‚)) β†’ ((l : Οƒ β†’ Ξ›) β†’ motive (Turing.TM2.Stmt.goto l)) β†’ motive Turing.TM2.Stmt.halt β†’ (n : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ motive n
Lean.Doc.MarkdownInline.mk
Lean.DocString.Markdown
{i : Type u} β†’ ((Lean.Doc.Inline i β†’ Lean.Doc.MarkdownM Unit) β†’ i β†’ Array (Lean.Doc.Inline i) β†’ Lean.Doc.MarkdownM Unit) β†’ Lean.Doc.MarkdownInline i
Lean.Linter.LinterOptions.noConfusionType
Lean.Linter.Basic
Sort u β†’ Lean.Linter.LinterOptions β†’ Lean.Linter.LinterOptions β†’ Sort u
CategoryTheory.Pretriangulated.shortComplexOfDistTriangleIsoOfIso._proof_3
Mathlib.CategoryTheory.Triangulated.Pretriangulated
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.HasShift C β„€] {T T' : CategoryTheory.Pretriangulated.Triangle C} (e : T β‰… T'), CategoryTheory.CategoryStruct.comp e.hom.hom₁ T'.mor₁ = CategoryTheory.CategoryStruct.comp T.mor₁ e.hom.homβ‚‚
SubalgebraClass.toAlgebra._proof_1
Mathlib.Algebra.Algebra.Subalgebra.Basic
βˆ€ {R : Type u_2} {A : Type u_1} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Algebra R A], (algebraMap R A) 1 = 1
ContinuousSqrt.mk.noConfusion
Mathlib.Topology.ContinuousMap.StarOrdered
{R : Type u_1} β†’ {inst : LE R} β†’ {inst_1 : NonUnitalSemiring R} β†’ {inst_2 : TopologicalSpace R} β†’ {P : Sort u} β†’ {sqrt : R Γ— R β†’ R} β†’ {continuousOn_sqrt : ContinuousOn sqrt {x | x.1 ≀ x.2}} β†’ {sqrt_nonneg : βˆ€ (x : R Γ— R), x.1 ≀ x.2 β†’ 0 ≀ sqrt x} β†’ {sqrt_mul_sqrt : βˆ€ (x : R Γ— R), x.1 ≀ x.2 β†’ x.2 = x.1 + sqrt x * sqrt x} β†’ {sqrt' : R Γ— R β†’ R} β†’ {continuousOn_sqrt' : ContinuousOn sqrt' {x | x.1 ≀ x.2}} β†’ {sqrt_nonneg' : βˆ€ (x : R Γ— R), x.1 ≀ x.2 β†’ 0 ≀ sqrt' x} β†’ {sqrt_mul_sqrt' : βˆ€ (x : R Γ— R), x.1 ≀ x.2 β†’ x.2 = x.1 + sqrt' x * sqrt' x} β†’ { sqrt := sqrt, continuousOn_sqrt := continuousOn_sqrt, sqrt_nonneg := sqrt_nonneg, sqrt_mul_sqrt := sqrt_mul_sqrt } = { sqrt := sqrt', continuousOn_sqrt := continuousOn_sqrt', sqrt_nonneg := sqrt_nonneg', sqrt_mul_sqrt := sqrt_mul_sqrt' } β†’ (sqrt ≍ sqrt' β†’ P) β†’ P
Nat.Primes.prodNatEquiv_apply
Mathlib.Data.Nat.Factorization.PrimePow
βˆ€ (p : Nat.Primes) (k : β„•), Nat.Primes.prodNatEquiv (p, k) = βŸ¨β†‘p ^ (k + 1), β‹―βŸ©
FiniteField.X_pow_card_sub_X_natDegree_eq
Mathlib.FieldTheory.Finite.Basic
βˆ€ (K' : Type u_3) [inst : Field K'] {p : β„•}, 1 < p β†’ (Polynomial.X ^ p - Polynomial.X).natDegree = p
Lean.Meta.EtaStructMode
Init.MetaTypes
Type
nonzero_span_atom
Mathlib.LinearAlgebra.Basis.VectorSpace
βˆ€ {K : Type u_3} {V : Type u_4} [inst : DivisionRing K] [inst_1 : AddCommGroup V] [inst_2 : Module K V] (v : V), v β‰  0 β†’ IsAtom (K βˆ™ v)
Polynomial.exists_multiset_roots._unary
Mathlib.Algebra.Polynomial.RingDivision
βˆ€ {R : Type u} [inst : CommRing R] [IsDomain R] [inst_2 : DecidableEq R] (_x : (p : Polynomial R) Γ—' p β‰  0), βˆƒ s, ↑s.card ≀ _x.1.degree ∧ βˆ€ (a : R), Multiset.count a s = Polynomial.rootMultiplicity a _x.1
_private.Mathlib.Data.Nat.GCD.BigOperators.0.Nat.coprime_list_prod_left_iff._simp_1_1
Mathlib.Data.Nat.GCD.BigOperators
βˆ€ {m n k : β„•}, (m * n).Coprime k = (m.Coprime k ∧ n.Coprime k)
CategoryTheory.Abelian.coimageIsoImage'
Mathlib.CategoryTheory.Abelian.Basic
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ [inst_1 : CategoryTheory.Abelian C] β†’ {X Y : C} β†’ (f : X ⟢ Y) β†’ CategoryTheory.Abelian.coimage f β‰… CategoryTheory.Limits.image f
String.Slice.Pattern.ForwardCharPredSearcher.noConfusion
Init.Data.String.Pattern.Pred
{P : Sort u} β†’ {p : Char β†’ Bool} β†’ {s : String.Slice} β†’ {t : String.Slice.Pattern.ForwardCharPredSearcher p s} β†’ {p' : Char β†’ Bool} β†’ {s' : String.Slice} β†’ {t' : String.Slice.Pattern.ForwardCharPredSearcher p' s'} β†’ p = p' β†’ s = s' β†’ t ≍ t' β†’ String.Slice.Pattern.ForwardCharPredSearcher.noConfusionType P t t'
_private.Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph.0.SimpleGraph.Walk.IsPath.neighborSet_toSubgraph_internal._proof_1_12
Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
βˆ€ {V : Type u_1} {G : SimpleGraph V} {v u : V} {p : G.Walk u v}, βˆ€ i' < p.length, i' + 1 ≀ p.length
Rep.indCoindIso._proof_3
Mathlib.RepresentationTheory.FiniteIndex
βˆ€ {k G : Type u_1} [inst : CommRing k] [inst_1 : Group G] {S : Subgroup G} [inst_2 : DecidableRel ⇑(QuotientGroup.rightRel S)] (A : Rep k β†₯S) [inst_3 : S.FiniteIndex], CategoryTheory.CategoryStruct.comp (ModuleCat.ofHom A.indToCoind) (ModuleCat.ofHom A.coindToInd) = CategoryTheory.CategoryStruct.id (Rep.ind S.subtype A).V
LinearMap.coe_prod
Mathlib.LinearAlgebra.Prod
βˆ€ {R : Type u} {M : Type v} {Mβ‚‚ : Type w} {M₃ : Type y} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : AddCommMonoid Mβ‚‚] [inst_3 : AddCommMonoid M₃] [inst_4 : Module R M] [inst_5 : Module R Mβ‚‚] [inst_6 : Module R M₃] (f : M β†’β‚—[R] Mβ‚‚) (g : M β†’β‚—[R] M₃), ⇑(f.prod g) = Pi.prod ⇑f ⇑g
CategoryTheory.Aut.instGroup._proof_7
Mathlib.CategoryTheory.Endomorphism
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] (X : C) (x x_1 x_2 : CategoryTheory.Aut X), x_2 β‰ͺ≫ x_1 β‰ͺ≫ x = (x_2 β‰ͺ≫ x_1) β‰ͺ≫ x
AddMonoidHom.coe_toZModLinearMap
Mathlib.Algebra.Module.ZMod
βˆ€ (n : β„•) {M : Type u_1} {M₁ : Type u_2} [inst : AddCommGroup M] [inst_1 : AddCommGroup M₁] [inst_2 : Module (ZMod n) M] [inst_3 : Module (ZMod n) M₁] (f : M β†’+ M₁), ⇑(AddMonoidHom.toZModLinearMap n f) = ⇑f
OrderMonoidHom.toMonoidHom
Mathlib.Algebra.Order.Hom.Monoid
{Ξ± : Type u_6} β†’ {Ξ² : Type u_7} β†’ [inst : Preorder Ξ±] β†’ [inst_1 : Preorder Ξ²] β†’ [inst_2 : MulOneClass Ξ±] β†’ [inst_3 : MulOneClass Ξ²] β†’ (Ξ± β†’*o Ξ²) β†’ Ξ± β†’* Ξ²
RingTheory.Sequence.IsWeaklyRegular.of_flat
Mathlib.RingTheory.Regular.Flat
βˆ€ {R : Type u_1} {S : Type u_2} [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : Algebra R S] [Module.Flat R S] {rs : List R}, RingTheory.Sequence.IsWeaklyRegular R rs β†’ RingTheory.Sequence.IsWeaklyRegular S (List.map (⇑(algebraMap R S)) rs)
_private.Mathlib.RingTheory.Idempotents.0.CompleteOrthogonalIdempotents.bijective_pi._simp_1_1
Mathlib.RingTheory.Idempotents
βˆ€ {Ξ± : Sort u} {Ξ² : Ξ± β†’ Sort v} {f g : (x : Ξ±) β†’ Ξ² x}, (f = g) = βˆ€ (x : Ξ±), f x = g x
Lean.Elab.MacroStackElem.mk.sizeOf_spec
Lean.Elab.Util
βˆ€ (before after : Lean.Syntax), sizeOf { before := before, after := after } = 1 + sizeOf before + sizeOf after
Int.land_bit
Mathlib.Data.Int.Bitwise
βˆ€ (a : Bool) (m : β„€) (b : Bool) (n : β„€), (Int.bit a m).land (Int.bit b n) = Int.bit (a && b) (m.land n)
LinearMap.SeparatingLeft.toMatrixβ‚‚
Mathlib.LinearAlgebra.Matrix.SesquilinearForm
βˆ€ {R₁ : Type u_2} {M₁ : Type u_6} {ΞΉ : Type u_15} [inst : CommRing R₁] [inst_1 : AddCommMonoid M₁] [inst_2 : Module R₁ M₁] [inst_3 : DecidableEq ΞΉ] [inst_4 : Fintype ΞΉ] {B : M₁ β†’β‚—[R₁] M₁ β†’β‚—[R₁] R₁}, B.SeparatingLeft β†’ βˆ€ (b : Module.Basis ΞΉ R₁ M₁), ((LinearMap.toMatrixβ‚‚ b b) B).Nondegenerate
NormedAddGroupHom.normNoninc_of_isometry
Mathlib.Analysis.Normed.Group.Hom
βˆ€ {V : Type u_1} {W : Type u_2} [inst : SeminormedAddCommGroup V] [inst_1 : SeminormedAddCommGroup W] {f : NormedAddGroupHom V W}, Isometry ⇑f β†’ f.NormNoninc
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.minKey!_eq_minKeyD_default._simp_1_1
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {x : Ord Ξ±} {x_1 : BEq Ξ±} [Std.LawfulBEqOrd Ξ±] {a b : Ξ±}, (compare a b = Ordering.eq) = ((a == b) = true)
CategoryTheory.StrongEpi.mk._flat_ctor
Mathlib.CategoryTheory.Limits.Shapes.StrongEpi
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {P Q : C} {f : P ⟢ Q}, CategoryTheory.Epi f β†’ (βˆ€ ⦃X Y : C⦄ (z : X ⟢ Y) [CategoryTheory.Mono z], CategoryTheory.HasLiftingProperty f z) β†’ CategoryTheory.StrongEpi f
_private.Init.Data.List.Impl.0.List.erasePTR.go._unsafe_rec
Init.Data.List.Impl
{Ξ± : Type u_1} β†’ (Ξ± β†’ Bool) β†’ List Ξ± β†’ List Ξ± β†’ Array Ξ± β†’ List Ξ±
SubfieldClass.toDivisionRing._proof_4
Mathlib.Algebra.Field.Subfield.Defs
βˆ€ {K : Type u_1} (S : Type u_2) [inst : SetLike S K] (s : S), Function.Injective fun a => ↑a
List.nextOr_singleton
Mathlib.Data.List.Cycle
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] (x y d : Ξ±), [y].nextOr x d = d
SimpleGraph.EdgeLabeling.pairwise_disjoint_labelGraph
Mathlib.Combinatorics.SimpleGraph.EdgeLabeling
βˆ€ {V : Type u_1} {G : SimpleGraph V} {K : Type u_3} {C : G.EdgeLabeling K}, Pairwise fun k l => Disjoint (C.labelGraph k) (C.labelGraph l)
Mathlib.Tactic.Hint._aux_Mathlib_Tactic_Hint___elabRules_Mathlib_Tactic_Hint_registerHintStx_1
Mathlib.Tactic.Hint
Lean.Elab.Command.CommandElab
BitVec.toInt_ushiftRight_of_lt
Init.Data.BitVec.Lemmas
βˆ€ {w : β„•} {x : BitVec w} {n : β„•}, 0 < n β†’ (x >>> n).toInt = ↑(x.toNat >>> n)
Mathlib.Tactic.BicategoryLike.MonadMorβ‚‚.homM
Mathlib.Tactic.CategoryTheory.Coherence.Datatypes
{m : Type β†’ Type} β†’ [self : Mathlib.Tactic.BicategoryLike.MonadMorβ‚‚ m] β†’ Mathlib.Tactic.BicategoryLike.Morβ‚‚Iso β†’ m Mathlib.Tactic.BicategoryLike.Morβ‚‚
Std.Iterators.PostconditionT.operation_lift
Init.Data.Iterators.PostconditionMonad
βˆ€ {m : Type w β†’ Type w'} [inst : Functor m] {Ξ± : Type w} {x : m Ξ±}, (Std.Iterators.PostconditionT.lift x).operation = (fun x_1 => ⟨x_1, β‹―βŸ©) <$> x
Algebra.TensorProduct.algEquivOfLinearEquivTripleTensorProduct._proof_1
Mathlib.RingTheory.TensorProduct.Maps
βˆ€ {R : Type u_5} {A : Type u_1} {B : Type u_2} {C : Type u_3} {D : Type u_4} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Algebra R A] [inst_3 : Semiring B] [inst_4 : Algebra R B] [inst_5 : Semiring C] [inst_6 : Semiring D] [inst_7 : Algebra R D] [inst_8 : Algebra R C] (f : TensorProduct R (TensorProduct R A B) C ≃ₗ[R] D), (βˆ€ (a₁ aβ‚‚ : A) (b₁ bβ‚‚ : B) (c₁ cβ‚‚ : C), f ((a₁ * aβ‚‚) βŠ—β‚œ[R] (b₁ * bβ‚‚) βŠ—β‚œ[R] (c₁ * cβ‚‚)) = f (a₁ βŠ—β‚œ[R] b₁ βŠ—β‚œ[R] c₁) * f (aβ‚‚ βŠ—β‚œ[R] bβ‚‚ βŠ—β‚œ[R] cβ‚‚)) β†’ (LinearMap.mul R (TensorProduct R (TensorProduct R A B) C)).comprβ‚‚ ↑f = (LinearMap.mul R D βˆ˜β‚— ↑f).complβ‚‚ ↑f
_private.Mathlib.RingTheory.SurjectiveOnStalks.0.RingHom.surjective_localRingHom_iff._simp_1_4
Mathlib.RingTheory.SurjectiveOnStalks
βˆ€ {R : Type u_1} [inst : CommSemiring R] {M : Submonoid R} {S : Type u_2} [inst_1 : CommSemiring S] [inst_2 : Algebra R S] [inst_3 : IsLocalization M S] {x₁ xβ‚‚ : R} {y₁ yβ‚‚ : β†₯M}, (IsLocalization.mk' S x₁ y₁ = IsLocalization.mk' S xβ‚‚ yβ‚‚) = ((algebraMap R S) (↑yβ‚‚ * x₁) = (algebraMap R S) (↑y₁ * xβ‚‚))
AffineIsometry.id._proof_1
Mathlib.Analysis.Normed.Affine.Isometry
βˆ€ {π•œ : Type u_2} {V : Type u_1} {P : Type u_3} [inst : NormedField π•œ] [inst_1 : SeminormedAddCommGroup V] [inst_2 : NormedSpace π•œ V] [inst_3 : PseudoMetricSpace P] [inst_4 : NormedAddTorsor V P] (x : V), β€–(AffineMap.id π•œ P).linear xβ€– = β€–(AffineMap.id π•œ P).linear xβ€–
ContinuousMap.Homotopy.prodMap
Mathlib.Topology.Homotopy.Basic
{X : Type u} β†’ {Y : Type v} β†’ {Z : Type w} β†’ {Z' : Type x} β†’ [inst : TopologicalSpace X] β†’ [inst_1 : TopologicalSpace Y] β†’ [inst_2 : TopologicalSpace Z] β†’ [inst_3 : TopologicalSpace Z'] β†’ {fβ‚€ f₁ : C(X, Y)} β†’ {gβ‚€ g₁ : C(Z, Z')} β†’ fβ‚€.Homotopy f₁ β†’ gβ‚€.Homotopy g₁ β†’ (fβ‚€.prodMap gβ‚€).Homotopy (f₁.prodMap g₁)
Std.Iterators.IteratorLoop.finiteForIn'
Init.Data.Iterators.Consumers.Monadic.Loop
{m : Type w β†’ Type w'} β†’ {n : Type x β†’ Type x'} β†’ {Ξ± Ξ² : Type w} β†’ [inst : Std.Iterators.Iterator Ξ± m Ξ²] β†’ [Std.Iterators.IteratorLoop Ξ± m n] β†’ [Monad n] β†’ ((Ξ³ : Type w) β†’ (Ξ΄ : Type x) β†’ (Ξ³ β†’ n Ξ΄) β†’ m Ξ³ β†’ n Ξ΄) β†’ ForIn' n (Std.IterM m Ξ²) Ξ² { mem := fun it out => it.IsPlausibleIndirectOutput out }
MonoidHom.noncommPiCoprodEquiv._proof_6
Mathlib.GroupTheory.NoncommPiCoprod
βˆ€ {M : Type u_3} [inst : Monoid M] {ΞΉ : Type u_1} [inst_1 : Fintype ΞΉ] {N : ΞΉ β†’ Type u_2} [inst_2 : (i : ΞΉ) β†’ Monoid (N i)] [inst_3 : DecidableEq ΞΉ] (f : ((i : ΞΉ) β†’ N i) β†’* M), MonoidHom.noncommPiCoprod β†‘βŸ¨fun i => f.comp (MonoidHom.mulSingle N i), β‹―βŸ© β‹― = f
ContinuousLinearEquiv.equivOfRightInverse
Mathlib.Topology.Algebra.Module.Equiv
{R : Type u_1} β†’ [inst : Ring R] β†’ {M : Type u_3} β†’ [inst_1 : TopologicalSpace M] β†’ [inst_2 : AddCommGroup M] β†’ [inst_3 : Module R M] β†’ {Mβ‚‚ : Type u_4} β†’ [inst_4 : TopologicalSpace Mβ‚‚] β†’ [inst_5 : AddCommGroup Mβ‚‚] β†’ [inst_6 : Module R Mβ‚‚] β†’ [IsTopologicalAddGroup M] β†’ (f₁ : M β†’L[R] Mβ‚‚) β†’ (fβ‚‚ : Mβ‚‚ β†’L[R] M) β†’ Function.RightInverse ⇑fβ‚‚ ⇑f₁ β†’ M ≃L[R] Mβ‚‚ Γ— β†₯(LinearMap.ker f₁)
_private.Mathlib.NumberTheory.NumberField.CanonicalEmbedding.ConvexBody.0.NumberField.mixedEmbedding.convexBodyLT_neg_mem._simp_1_5
Mathlib.NumberTheory.NumberField.CanonicalEmbedding.ConvexBody
βˆ€ (p : True β†’ Prop), (βˆ€ (x : True), p x) = p True.intro
AlternatingMap.coe_injective
Mathlib.LinearAlgebra.Alternating.Basic
βˆ€ {R : Type u_1} [inst : Semiring R] {M : Type u_2} [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {N : Type u_3} [inst_3 : AddCommMonoid N] [inst_4 : Module R N] {ΞΉ : Type u_7}, Function.Injective DFunLike.coe
SimpleGraph.cycleGraph_zero_eq_bot
Mathlib.Combinatorics.SimpleGraph.Circulant
SimpleGraph.cycleGraph 0 = βŠ₯
Function.Injective.divisionMonoid
Mathlib.Algebra.Group.InjSurj
{M₁ : Type u_1} β†’ {Mβ‚‚ : Type u_2} β†’ [inst : Mul M₁] β†’ [inst_1 : One M₁] β†’ [inst_2 : Pow M₁ β„•] β†’ [inst_3 : Inv M₁] β†’ [inst_4 : Div M₁] β†’ [inst_5 : Pow M₁ β„€] β†’ [inst_6 : DivisionMonoid Mβ‚‚] β†’ (f : M₁ β†’ Mβ‚‚) β†’ Function.Injective f β†’ f 1 = 1 β†’ (βˆ€ (x y : M₁), f (x * y) = f x * f y) β†’ (βˆ€ (x : M₁), f x⁻¹ = (f x)⁻¹) β†’ (βˆ€ (x y : M₁), f (x / y) = f x / f y) β†’ (βˆ€ (x : M₁) (n : β„•), f (x ^ n) = f x ^ n) β†’ (βˆ€ (x : M₁) (n : β„€), f (x ^ n) = f x ^ n) β†’ DivisionMonoid M₁
Multiset.disjoint_map_map
Mathlib.Data.Multiset.UnionInter
βˆ€ {Ξ± : Type u_1} {Ξ² : Type v} {Ξ³ : Type u_2} {f : Ξ± β†’ Ξ³} {g : Ξ² β†’ Ξ³} {s : Multiset Ξ±} {t : Multiset Ξ²}, Disjoint (Multiset.map f s) (Multiset.map g t) ↔ βˆ€ a ∈ s, βˆ€ b ∈ t, f a β‰  g b
List.Vector.ofFn.match_1
Mathlib.Data.Vector.Defs
{Ξ± : Type u_2} β†’ (motive : (x : β„•) β†’ (Fin x β†’ Ξ±) β†’ Sort u_1) β†’ (x : β„•) β†’ (x_1 : Fin x β†’ Ξ±) β†’ ((x : Fin 0 β†’ Ξ±) β†’ motive 0 x) β†’ ((n : β„•) β†’ (f : Fin (n + 1) β†’ Ξ±) β†’ motive n.succ f) β†’ motive x x_1
Lean.Meta.Match.Example.arrayLit.injEq
Lean.Meta.Match.Basic
βˆ€ (a a_1 : List Lean.Meta.Match.Example), (Lean.Meta.Match.Example.arrayLit a = Lean.Meta.Match.Example.arrayLit a_1) = (a = a_1)
_private.Lean.Elab.Tactic.Grind.Main.0.Lean.Elab.Tactic.grind.match_6
Lean.Elab.Tactic.Grind.Main
(motive : Option (Lean.TSyntax `Lean.Parser.Tactic.Grind.grindSeq) β†’ Sort u_1) β†’ (seq? : Option (Lean.TSyntax `Lean.Parser.Tactic.Grind.grindSeq)) β†’ ((seq : Lean.TSyntax `Lean.Parser.Tactic.Grind.grindSeq) β†’ motive (some seq)) β†’ ((x : Option (Lean.TSyntax `Lean.Parser.Tactic.Grind.grindSeq)) β†’ motive x) β†’ motive seq?
Std.DTreeMap.Internal.Impl.Const.get!.eq_1
Std.Data.DTreeMap.Internal.Model
βˆ€ {Ξ± : Type u} {Ξ΄ : Type w} [inst : Ord Ξ±] [inst_1 : Inhabited Ξ΄] (k : Ξ±), Std.DTreeMap.Internal.Impl.Const.get! Std.DTreeMap.Internal.Impl.leaf k = panicWithPosWithDecl "Std.Data.DTreeMap.Internal.Queries" "Std.DTreeMap.Internal.Impl.Const.get!" 221 13 "Key is not present in map"
SchwartzMap.mkLM._proof_4
Mathlib.Analysis.Distribution.SchwartzSpace
βˆ€ {π•œ : Type u_5} {D : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] [inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace ℝ F] [inst_4 : NormedField π•œ] [inst_5 : NormedAddCommGroup D] [inst_6 : NormedSpace ℝ D] [inst_7 : NormedSpace π•œ E] [inst_8 : SMulCommClass ℝ π•œ E] [inst_9 : NormedAddCommGroup G] [inst_10 : NormedSpace ℝ G] (A : SchwartzMap D E β†’ F β†’ G), (βˆ€ (f g : SchwartzMap D E) (x : F), A (f + g) x = A f x + A g x) β†’ βˆ€ (hsmooth : βˆ€ (f : SchwartzMap D E), ContDiff ℝ (β†‘βŠ€) (A f)) (hbound : βˆ€ (n : β„• Γ— β„•), βˆƒ s C, 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E) (x : F), β€–xβ€– ^ n.1 * β€–iteratedFDeriv ℝ n.2 (A f) xβ€– ≀ C * (s.sup (schwartzSeminormFamily π•œ D E)) f) (f g : SchwartzMap D E), { toFun := A (f + g), smooth' := β‹―, decay' := β‹― } = { toFun := A f, smooth' := β‹―, decay' := β‹― } + { toFun := A g, smooth' := β‹―, decay' := β‹― }
AlgEquiv.toLinearEquiv_symm
Mathlib.Algebra.Algebra.Equiv
βˆ€ {R : Type uR} {A₁ : Type uA₁} {Aβ‚‚ : Type uAβ‚‚} [inst : CommSemiring R] [inst_1 : Semiring A₁] [inst_2 : Semiring Aβ‚‚] [inst_3 : Algebra R A₁] [inst_4 : Algebra R Aβ‚‚] (e : A₁ ≃ₐ[R] Aβ‚‚), e.symm.toLinearEquiv = e.toLinearEquiv.symm
Lean.Parser.Command.syntaxCat._regBuiltin.Lean.Parser.Command.syntaxCat.formatter_17
Lean.Parser.Syntax
IO Unit
_private.Mathlib.Combinatorics.Matroid.Rank.Finite.0.Matroid.isRkFinite_inter_ground_iff.match_1_1
Mathlib.Combinatorics.Matroid.Rank.Finite
βˆ€ {Ξ± : Type u_1} {M : Matroid Ξ±} {X : Set Ξ±} (motive : (βˆƒ I, M.IsBasis' I X) β†’ Prop) (x : βˆƒ I, M.IsBasis' I X), (βˆ€ (_I : Set Ξ±) (hI : M.IsBasis' _I X), motive β‹―) β†’ motive x
Pi.instPosSMulReflectLE
Mathlib.Algebra.Order.Module.Defs
βˆ€ {Ξ± : Type u_1} {ΞΉ : Type u_3} {Ξ² : ΞΉ β†’ Type u_4} [inst : Zero Ξ±] [inst_1 : Preorder Ξ±] [inst_2 : (i : ΞΉ) β†’ Preorder (Ξ² i)] [inst_3 : (i : ΞΉ) β†’ SMul Ξ± (Ξ² i)] [βˆ€ (i : ΞΉ), PosSMulReflectLE Ξ± (Ξ² i)], PosSMulReflectLE Ξ± ((i : ΞΉ) β†’ Ξ² i)
ContinuousMultilinearMap.instInhabited
Mathlib.Topology.Algebra.Module.Multilinear.Basic
{R : Type u} β†’ {ΞΉ : Type v} β†’ {M₁ : ΞΉ β†’ Type w₁} β†’ {Mβ‚‚ : Type wβ‚‚} β†’ [inst : Semiring R] β†’ [inst_1 : (i : ΞΉ) β†’ AddCommMonoid (M₁ i)] β†’ [inst_2 : AddCommMonoid Mβ‚‚] β†’ [inst_3 : (i : ΞΉ) β†’ Module R (M₁ i)] β†’ [inst_4 : Module R Mβ‚‚] β†’ [inst_5 : (i : ΞΉ) β†’ TopologicalSpace (M₁ i)] β†’ [inst_6 : TopologicalSpace Mβ‚‚] β†’ Inhabited (ContinuousMultilinearMap R M₁ Mβ‚‚)
_private.Mathlib.Algebra.Category.Ring.Basic.0.CommSemiRingCat.Hom.mk
Mathlib.Algebra.Category.Ring.Basic
{R S : CommSemiRingCat} β†’ (↑R β†’+* ↑S) β†’ R.Hom S
CategoryTheory.ComposableArrows.sc'._proof_7
Mathlib.Algebra.Homology.ExactSequence
βˆ€ {n : β„•} (i j k : β„•), i + 1 = j β†’ j + 1 = k β†’ k ≀ n β†’ i < n + 1
CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right
Mathlib.CategoryTheory.Comma.Over.Basic
βˆ€ {T : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} T] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] {C : Type u₃} [inst_2 : CategoryTheory.Category.{v₃, u₃} C] (F : CategoryTheory.Functor C T) (G : CategoryTheory.Functor D T) (c : C) {X Y : CategoryTheory.Comma ((CategoryTheory.Under.forget c).comp F) G} (g : X ⟢ Y), ((CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse F G c).map g).right.right = g.right
Aesop.MVarCluster.setState
Aesop.Tree.Data
Aesop.NodeState β†’ Aesop.MVarCluster β†’ Aesop.MVarCluster
sup_congr_left
Mathlib.Order.Lattice
βˆ€ {Ξ± : Type u} [inst : SemilatticeSup Ξ±] {a b c : Ξ±}, b ≀ a βŠ” c β†’ c ≀ a βŠ” b β†’ a βŠ” b = a βŠ” c
ONote.NFBelow.rec
Mathlib.SetTheory.Ordinal.Notation
βˆ€ {motive : (a : ONote) β†’ (a_1 : Ordinal.{0}) β†’ a.NFBelow a_1 β†’ Prop}, (βˆ€ {b : Ordinal.{0}}, motive 0 b β‹―) β†’ (βˆ€ {e : ONote} {n : β„•+} {a : ONote} {eb b : Ordinal.{0}} (a_1 : e.NFBelow eb) (a_2 : a.NFBelow e.repr) (a_3 : e.repr < b), motive e eb a_1 β†’ motive a e.repr a_2 β†’ motive (e.oadd n a) b β‹―) β†’ βˆ€ {a : ONote} {a_1 : Ordinal.{0}} (t : a.NFBelow a_1), motive a a_1 t
Std.TreeSet.Raw.min?_toList
Std.Data.TreeSet.Raw.Lemmas
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.TreeSet.Raw Ξ± cmp} [Std.TransCmp cmp] [inst : Min Ξ±] [inst_1 : LE Ξ±] [Std.LawfulOrderCmp cmp] [Std.LawfulOrderMin Ξ±] [Std.LawfulOrderLeftLeaningMin Ξ±] [Std.LawfulEqCmp cmp], t.WF β†’ t.toList.min? = t.min?
Std.DTreeMap.Raw.get!_union_of_not_mem_left
Std.Data.DTreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t₁ tβ‚‚ : Std.DTreeMap.Raw Ξ± Ξ² cmp} [Std.TransCmp cmp] [inst : Std.LawfulEqCmp cmp], t₁.WF β†’ tβ‚‚.WF β†’ βˆ€ {k : Ξ±} [inst_1 : Inhabited (Ξ² k)], k βˆ‰ t₁ β†’ (t₁ βˆͺ tβ‚‚).get! k = tβ‚‚.get! k
Std.DTreeMap.Raw.get_alter_self
Std.Data.DTreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.DTreeMap.Raw Ξ± Ξ² cmp} [inst : Std.TransCmp cmp] [inst_1 : Std.LawfulEqCmp cmp] (h : t.WF) {k : Ξ±} {f : Option (Ξ² k) β†’ Option (Ξ² k)} {hc : k ∈ t.alter k f}, (t.alter k f).get k hc = (f (t.get? k)).get β‹―
Fin.consEquivL._proof_3
Mathlib.Topology.Algebra.Module.Equiv
βˆ€ {n : β„•} (M : Fin n.succ β†’ Type u_1) [inst : (i : Fin n.succ) β†’ TopologicalSpace (M i)], Continuous fun a => Fin.cons (id a).1 a.2
CategoryTheory.Functor.PreservesRightKanExtension.mk_of_preserves_isRightKanExtension
Mathlib.CategoryTheory.Functor.KanExtension.Preserves
βˆ€ {A : Type u_1} {B : Type u_2} {C : Type u_3} {D : Type u_4} [inst : CategoryTheory.Category.{v_1, u_1} A] [inst_1 : CategoryTheory.Category.{v_2, u_2} B] [inst_2 : CategoryTheory.Category.{v_3, u_3} C] [inst_3 : CategoryTheory.Category.{v_4, u_4} D] (G : CategoryTheory.Functor B D) (F : CategoryTheory.Functor A B) (L : CategoryTheory.Functor A C) (F' : CategoryTheory.Functor C B) (Ξ± : L.comp F' ⟢ F) [F'.IsRightKanExtension Ξ±], (F'.comp G).IsRightKanExtension (CategoryTheory.CategoryStruct.comp (L.associator F' G).inv (CategoryTheory.Functor.whiskerRight Ξ± G)) β†’ G.PreservesRightKanExtension F L
_private.Mathlib.Analysis.SpecialFunctions.Log.NegMulLog.0.Real.continuous_mul_log._simp_1_2
Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Ξ± β†’ Ξ²} {x₁ xβ‚‚ : Filter Ξ±} {y : Filter Ξ²}, Filter.Tendsto f (x₁ βŠ” xβ‚‚) y = (Filter.Tendsto f x₁ y ∧ Filter.Tendsto f xβ‚‚ y)
Lean.Grind.instAddIntIi
Init.GrindInstances.ToInt
Lean.Grind.ToInt.Add β„€ Lean.Grind.IntInterval.ii
_private.Init.Data.BitVec.Bitblast.0.BitVec.getElem_sdiv.match_1.eq_4
Init.Data.BitVec.Bitblast
βˆ€ (motive : Bool β†’ Bool β†’ Sort u_1) (h_1 : Unit β†’ motive false false) (h_2 : Unit β†’ motive false true) (h_3 : Unit β†’ motive true false) (h_4 : Unit β†’ motive true true), (match true, true with | false, false => h_1 () | false, true => h_2 () | true, false => h_3 () | true, true => h_4 ()) = h_4 ()
Int.noConfusionType
Init.Data.Int.Basic
Sort u β†’ β„€ β†’ β„€ β†’ Sort u
_private.Init.Data.Vector.Algebra.0.Vector.add_hmul._proof_1_2
Init.Data.Vector.Algebra
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} {Ξ³ : Type u_1} {n : β„•} [inst : Add Ξ±] [inst_1 : Add Ξ³] [inst_2 : HMul Ξ± Ξ² Ξ³], (βˆ€ (c d : Ξ±) (x : Ξ²), (c + d) * x = c * x + d * x) β†’ βˆ€ (c d : Ξ±) (xs : Vector Ξ² n), (c + d) * xs = c * xs + d * xs
_private.Std.Data.Internal.List.Associative.0.Std.Internal.List.containsKey_flatMap_eq_false._simp_1_1
Std.Data.Internal.List.Associative
βˆ€ {x y : Bool}, ((x || y) = false) = (x = false ∧ y = false)
CategoryTheory.Functor.IsDense.mk
Mathlib.CategoryTheory.Functor.KanExtension.Dense
βˆ€ {C : Type u₁} {D : Type uβ‚‚} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] {F : CategoryTheory.Functor C D}, (βˆ€ (Y : D), F.isDenseAt Y) β†’ F.IsDense
Finset.disjiUnion_cons
Mathlib.Data.Finset.Union
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} (a : Ξ±) (s : Finset Ξ±) (ha : a βˆ‰ s) (f : Ξ± β†’ Finset Ξ²) (H : (↑(Finset.cons a s ha)).PairwiseDisjoint f), (Finset.cons a s ha).disjiUnion f H = (f a).disjUnion (s.disjiUnion f β‹―) β‹―