name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
GroupLike.val_inj._simp_1
Mathlib.RingTheory.Coalgebra.GroupLike
βˆ€ {R : Type u_2} {A : Type u_3} [inst : CommSemiring R] [inst_1 : AddCommMonoid A] [inst_2 : Module R A] [inst_3 : Coalgebra R A] {a b : GroupLike R A}, (↑a = ↑b) = (a = b)
Lean.Meta.mkSizeOfFns
Lean.Meta.SizeOf
Lean.Name β†’ Lean.MetaM (Array Lean.Name Γ— Lean.NameMap Lean.Name)
skewAdjointLieSubalgebra
Mathlib.Algebra.Lie.SkewAdjoint
{R : Type u} β†’ {M : Type v} β†’ [inst : CommRing R] β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ LinearMap.BilinForm R M β†’ LieSubalgebra R (Module.End R M)
forall_gt_imp_ne_iff_le
Mathlib.Order.Basic
βˆ€ {Ξ± : Type u_2} [inst : LinearOrder Ξ±] {a b : Ξ±}, (βˆ€ (c : Ξ±), a < c β†’ c β‰  b) ↔ b ≀ a
_private.Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec.0.BitVec.instDecidableEqLiteral.decEq._proof_1
Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec
βˆ€ (a : β„•) (a_1 : BitVec a), { n := a, value := a_1 } = { n := a, value := a_1 }
_private.Std.Data.Internal.List.Associative.0.Std.Internal.List.List.getValue?_filter_containsKey._simp_1_2
Std.Data.Internal.List.Associative
βˆ€ {Ξ± : Type u_1} {x : Option Ξ±} {Ξ±_1 : Type u_2} {f : Ξ± β†’ Ξ±_1}, (Option.map f x = none) = (x = none)
Lean.Meta.Grind.AC.MonadGetStruct.noConfusion
Lean.Meta.Tactic.Grind.AC.Util
{P : Sort u} β†’ {m : Type β†’ Type} β†’ {t : Lean.Meta.Grind.AC.MonadGetStruct m} β†’ {m' : Type β†’ Type} β†’ {t' : Lean.Meta.Grind.AC.MonadGetStruct m'} β†’ m = m' β†’ t ≍ t' β†’ Lean.Meta.Grind.AC.MonadGetStruct.noConfusionType P t t'
BitVec.reduceGetMsb
Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec
Lean.Meta.Simp.DSimproc
MulOpposite.isCancelMulZero_iff
Mathlib.Algebra.GroupWithZero.Opposite
βˆ€ {Ξ± : Type u_1} [inst : Mul Ξ±] [inst_1 : Zero Ξ±], IsCancelMulZero αᡐᡒᡖ ↔ IsCancelMulZero Ξ±
Submodule.mem_sSup
Mathlib.LinearAlgebra.Span.Defs
βˆ€ {R : Type u_1} {M : Type u_4} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {s : Set (Submodule R M)} {m : M}, m ∈ sSup s ↔ βˆ€ (N : Submodule R M), (βˆ€ p ∈ s, p ≀ N) β†’ m ∈ N
CategoryTheory.MorphismProperty.multiplicativeClosure.below.casesOn
Mathlib.CategoryTheory.MorphismProperty.Composition
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {W : CategoryTheory.MorphismProperty C} {motive : ⦃X Y : C⦄ β†’ (x : X ⟢ Y) β†’ W.multiplicativeClosure x β†’ Prop} {motive_1 : {X Y : C} β†’ {x : X ⟢ Y} β†’ (t : W.multiplicativeClosure x) β†’ CategoryTheory.MorphismProperty.multiplicativeClosure.below t β†’ Prop} {X Y : C} {x : X ⟢ Y} {t : W.multiplicativeClosure x} (t_1 : CategoryTheory.MorphismProperty.multiplicativeClosure.below t), (βˆ€ {x y : C} (f : x ⟢ y) (hf : W f), motive_1 β‹― β‹―) β†’ (βˆ€ (x : C), motive_1 β‹― β‹―) β†’ (βˆ€ {x y z : C} (f : x ⟢ y) (g : y ⟢ z) (hf : W.multiplicativeClosure f) (hg : W g) (ih : CategoryTheory.MorphismProperty.multiplicativeClosure.below hf) (hf_ih : motive f hf), motive_1 β‹― β‹―) β†’ motive_1 t t_1
Aesop.UnsafeQueueEntry.instToString.match_1
Aesop.Tree.UnsafeQueue
(motive : Aesop.UnsafeQueueEntry β†’ Sort u_1) β†’ (x : Aesop.UnsafeQueueEntry) β†’ ((r : Aesop.IndexMatchResult Aesop.UnsafeRule) β†’ motive (Aesop.UnsafeQueueEntry.unsafeRule r)) β†’ ((r : Aesop.PostponedSafeRule) β†’ motive (Aesop.UnsafeQueueEntry.postponedSafeRule r)) β†’ motive x
ContinuousMultilinearMap.smulRightL._proof_2
Mathlib.Analysis.Normed.Module.Multilinear.Basic
βˆ€ (π•œ : Type u_4) {ΞΉ : Type u_1} (E : ΞΉ β†’ Type u_2) (G : Type u_3) [inst : NontriviallyNormedField π•œ] [inst_1 : (i : ΞΉ) β†’ SeminormedAddCommGroup (E i)] [inst_2 : (i : ΞΉ) β†’ NormedSpace π•œ (E i)] [inst_3 : SeminormedAddCommGroup G] [inst_4 : NormedSpace π•œ G] [inst_5 : Fintype ΞΉ] (f : ContinuousMultilinearMap π•œ E π•œ) (x y : G), f.smulRight (x + y) = f.smulRight x + f.smulRight y
modelWithCornersEuclideanQuadrant
Mathlib.Geometry.Manifold.Instances.Real
(n : β„•) β†’ ModelWithCorners ℝ (EuclideanSpace ℝ (Fin n)) (EuclideanQuadrant n)
ModularForm.trace
Mathlib.NumberTheory.ModularForms.NormTrace
{𝒒 : Subgroup (GL (Fin 2) ℝ)} β†’ (β„‹ : Subgroup (GL (Fin 2) ℝ)) β†’ {F : Type u_1} β†’ F β†’ [inst : FunLike F UpperHalfPlane β„‚] β†’ {k : β„€} β†’ [𝒒.IsFiniteRelIndex β„‹] β†’ [ModularFormClass F 𝒒 k] β†’ ModularForm β„‹ k
CompleteOrthogonalIdempotents.ringEquivOfIsMulCentral._proof_3
Mathlib.RingTheory.Idempotents
βˆ€ {R : Type u_1} {I : Type u_2} {e : I β†’ R} [inst : Semiring R] (r : R) (i : I), βˆƒ y, e i * y * e i = e i * r * e i
CommMonCat.forgetβ‚‚_map_ofHom
Mathlib.Algebra.Category.MonCat.Basic
βˆ€ {X Y : Type u} [inst : CommMonoid X] [inst_1 : CommMonoid Y] (f : X β†’* Y), (CategoryTheory.forgetβ‚‚ CommMonCat MonCat).map (CommMonCat.ofHom f) = MonCat.ofHom f
Lean.Parser.Term.doHave._regBuiltin.Lean.Parser.Term.doHave_1
Lean.Parser.Do
IO Unit
Lean.Doc.Part.below_2
Lean.DocString.Types
{i : Type u} β†’ {b : Type v} β†’ {p : Type w} β†’ {motive_1 : Lean.Doc.Part i b p β†’ Sort u_1} β†’ {motive_2 : Array (Lean.Doc.Part i b p) β†’ Sort u_1} β†’ {motive_3 : List (Lean.Doc.Part i b p) β†’ Sort u_1} β†’ List (Lean.Doc.Part i b p) β†’ Sort (max ((max (max u v) w) + 1) u_1)
MeasureTheory.setToFun_mono_left'
Mathlib.MeasureTheory.Integral.SetToL1
βˆ€ {Ξ± : Type u_1} {E : Type u_2} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} {G'' : Type u_8} [inst_2 : NormedAddCommGroup G''] [inst_3 : PartialOrder G''] [OrderClosedTopology G''] [IsOrderedAddMonoid G''] [inst_6 : NormedSpace ℝ G''] [inst_7 : CompleteSpace G''] {T T' : Set Ξ± β†’ E β†’L[ℝ] G''} {C C' : ℝ} (hT : MeasureTheory.DominatedFinMeasAdditive ΞΌ T C) (hT' : MeasureTheory.DominatedFinMeasAdditive ΞΌ T' C'), (βˆ€ (s : Set Ξ±), MeasurableSet s β†’ ΞΌ s < ⊀ β†’ βˆ€ (x : E), (T s) x ≀ (T' s) x) β†’ βˆ€ (f : Ξ± β†’ E), MeasureTheory.setToFun ΞΌ T hT f ≀ MeasureTheory.setToFun ΞΌ T' hT' f
PNat.instSuccAddOrder
Mathlib.Data.PNat.Order
SuccAddOrder β„•+
contMDiff_zero_iff
Mathlib.Geometry.Manifold.ContMDiff.Defs
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {H : Type u_3} [inst_3 : TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] {E' : Type u_5} [inst_6 : NormedAddCommGroup E'] [inst_7 : NormedSpace π•œ E'] {H' : Type u_6} [inst_8 : TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M' : Type u_7} [inst_9 : TopologicalSpace M'] [inst_10 : ChartedSpace H' M'] {f : M β†’ M'}, ContMDiff I I' 0 f ↔ Continuous f
UniformSpaceCat.instFunLike
Mathlib.Topology.Category.UniformSpace
(X : UniformSpaceCat) β†’ (Y : UniformSpaceCat) β†’ FunLike { f // UniformContinuous f } X.carrier Y.carrier
_private.Mathlib.Topology.Order.DenselyOrdered.0.comap_coe_Ioi_nhdsGT.match_1_1
Mathlib.Topology.Order.DenselyOrdered
βˆ€ {Ξ± : Type u_1} [inst : LinearOrder Ξ±] (a : Ξ±) (motive : (Set.Ioi a).Nonempty β†’ Prop) (x : (Set.Ioi a).Nonempty), (βˆ€ (x : Ξ±) (hx : x ∈ Set.Ioi a), motive β‹―) β†’ motive x
Nat.log_le_clog._simp_1
Mathlib.Data.Nat.Log
βˆ€ (b n : β„•), (Nat.log b n ≀ Nat.clog b n) = True
dvd_differentIdeal_iff
Mathlib.RingTheory.DedekindDomain.Different
βˆ€ {A : Type u_1} {B : Type u_3} [inst : CommRing A] [inst_1 : CommRing B] [inst_2 : Algebra A B] [inst_3 : IsDomain A] [IsDedekindDomain A] [inst_5 : IsDedekindDomain B] [inst_6 : NoZeroSMulDivisors A B] [Module.Finite A B] [Algebra.IsSeparable (FractionRing A) (FractionRing B)] {P : Ideal B} [inst_9 : P.IsPrime], P ∣ differentIdeal A B ↔ Β¬Algebra.IsUnramifiedAt A P
WType.toList.match_1
Mathlib.Data.W.Constructions
(Ξ³ : Type u_1) β†’ (motive : WType (WType.ListΞ² Ξ³) β†’ Sort u_2) β†’ (x : WType (WType.ListΞ² Ξ³)) β†’ ((f : WType.ListΞ² Ξ³ WType.ListΞ±.nil β†’ WType (WType.ListΞ² Ξ³)) β†’ motive (WType.mk WType.ListΞ±.nil f)) β†’ ((hd : Ξ³) β†’ (f : WType.ListΞ² Ξ³ (WType.ListΞ±.cons hd) β†’ WType (WType.ListΞ² Ξ³)) β†’ motive (WType.mk (WType.ListΞ±.cons hd) f)) β†’ motive x
_private.Aesop.Util.Basic.0.Aesop.filterTrieM.go.match_3
Aesop.Util.Basic
{Ξ± : Type} β†’ (motive : Lean.Meta.DiscrTree.Key Γ— Lean.Meta.DiscrTree.Trie Ξ± β†’ Sort u_1) β†’ (x : Lean.Meta.DiscrTree.Key Γ— Lean.Meta.DiscrTree.Trie Ξ±) β†’ ((key : Lean.Meta.DiscrTree.Key) β†’ (t : Lean.Meta.DiscrTree.Trie Ξ±) β†’ motive (key, t)) β†’ motive x
Lean.Server.Test.Runner.Client.InfoPopup.ctorIdx
Lean.Server.Test.Runner
Lean.Server.Test.Runner.Client.InfoPopup β†’ β„•
Aesop.ElabM.Context.casesOn
Aesop.ElabM
{motive : Aesop.ElabM.Context β†’ Sort u} β†’ (t : Aesop.ElabM.Context) β†’ ((parsePriorities : Bool) β†’ (goal : Lean.MVarId) β†’ motive { parsePriorities := parsePriorities, goal := goal }) β†’ motive t
Lean.MessageData.withContext
Lean.Message
Lean.MessageDataContext β†’ Lean.MessageData β†’ Lean.MessageData
CategoryTheory.Mon.hom_one
Mathlib.CategoryTheory.Monoidal.Cartesian.Mon_
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{v, u_1} C] [inst_1 : CategoryTheory.CartesianMonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] (M : CategoryTheory.Mon C) [inst_3 : CategoryTheory.IsCommMonObj M.X], CategoryTheory.MonObj.one.hom = CategoryTheory.MonObj.one
_private.Mathlib.AlgebraicTopology.SimplexCategory.Basic.0.SimplexCategory.mkOfLe.match_1.splitter
Mathlib.AlgebraicTopology.SimplexCategory.Basic
(motive : Fin (1 + 1) β†’ Sort u_1) β†’ (x : Fin (1 + 1)) β†’ (Unit β†’ motive 0) β†’ (Unit β†’ motive 1) β†’ motive x
_private.Lean.Elab.DocString.0.Lean.Doc.builtinElabName.match_1
Lean.Elab.DocString
(motive : Lean.Name β†’ Sort u_1) β†’ (n : Lean.Name) β†’ ((str : String) β†’ motive (Lean.Name.anonymous.str str)) β†’ ((x : Lean.Name) β†’ motive x) β†’ motive n
Std.DHashMap.Internal.Rawβ‚€.getKey?_eq_some_iff
Std.Data.DHashMap.Internal.RawLemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} (m : Std.DHashMap.Internal.Rawβ‚€ Ξ± Ξ²) [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] [EquivBEq Ξ±] [LawfulHashable Ξ±], (↑m).WF β†’ βˆ€ {k k' : Ξ±}, m.getKey? k = some k' ↔ βˆƒ (h : m.contains k = true), m.getKey k h = k'
_private.Lean.AddDecl.0.Lean.addDecl._sparseCasesOn_10
Lean.AddDecl
{Ξ± : Type u} β†’ {motive : List Ξ± β†’ Sort u_1} β†’ (t : List Ξ±) β†’ motive [] β†’ (Nat.hasNotBit 1 t.ctorIdx β†’ motive t) β†’ motive t
HomologicalComplex.mapBifunctor.hom_ext_iff
Mathlib.Algebra.Homology.Bifunctor
βˆ€ {C₁ : Type u_1} {Cβ‚‚ : Type u_2} {D : Type u_3} [inst : CategoryTheory.Category.{v_1, u_1} C₁] [inst_1 : CategoryTheory.Category.{v_2, u_2} Cβ‚‚] [inst_2 : CategoryTheory.Category.{v_3, u_3} D] {I₁ : Type u_4} {Iβ‚‚ : Type u_5} {J : Type u_6} {c₁ : ComplexShape I₁} {cβ‚‚ : ComplexShape Iβ‚‚} [inst_3 : CategoryTheory.Limits.HasZeroMorphisms C₁] [inst_4 : CategoryTheory.Limits.HasZeroMorphisms Cβ‚‚] [inst_5 : CategoryTheory.Preadditive D] {K₁ : HomologicalComplex C₁ c₁} {Kβ‚‚ : HomologicalComplex Cβ‚‚ cβ‚‚} {F : CategoryTheory.Functor C₁ (CategoryTheory.Functor Cβ‚‚ D)} [inst_6 : F.PreservesZeroMorphisms] [inst_7 : βˆ€ (X₁ : C₁), (F.obj X₁).PreservesZeroMorphisms] {c : ComplexShape J} [inst_8 : TotalComplexShape c₁ cβ‚‚ c] [inst_9 : K₁.HasMapBifunctor Kβ‚‚ F c] [inst_10 : DecidableEq J] {Y : D} {j : J} {f g : (K₁.mapBifunctor Kβ‚‚ F c).X j ⟢ Y}, f = g ↔ βˆ€ (i₁ : I₁) (iβ‚‚ : Iβ‚‚) (h : c₁.Ο€ cβ‚‚ c (i₁, iβ‚‚) = j), CategoryTheory.CategoryStruct.comp (K₁.ΞΉMapBifunctor Kβ‚‚ F c i₁ iβ‚‚ j h) f = CategoryTheory.CategoryStruct.comp (K₁.ΞΉMapBifunctor Kβ‚‚ F c i₁ iβ‚‚ j h) g
StieltjesFunction.measurable_measure
Mathlib.Probability.Kernel.Disintegration.MeasurableStieltjes
βˆ€ {Ξ± : Type u_1} {x : MeasurableSpace Ξ±} {f : Ξ± β†’ StieltjesFunction ℝ}, (βˆ€ (q : ℝ), Measurable fun a => ↑(f a) q) β†’ (βˆ€ (a : Ξ±), Filter.Tendsto (↑(f a)) Filter.atBot (nhds 0)) β†’ (βˆ€ (a : Ξ±), Filter.Tendsto (↑(f a)) Filter.atTop (nhds 1)) β†’ Measurable fun a => (f a).measure
OrderMonoidWithZeroHom.toMonoidWithZeroHom_mk
Mathlib.Algebra.Order.Hom.MonoidWithZero
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} {hΞ± : Preorder Ξ±} {hΞ±' : MulZeroOneClass Ξ±} {hΞ² : Preorder Ξ²} {hΞ²' : MulZeroOneClass Ξ²} (f : Ξ± β†’*β‚€ Ξ²) (hf : Monotone ⇑f), ↑{ toMonoidWithZeroHom := f, monotone' := hf } = f
_private.Batteries.Tactic.Trans.0.Batteries.Tactic.initFn.match_7._@.Batteries.Tactic.Trans.2247956323._hygCtx._hyg.2
Batteries.Tactic.Trans
(motive : Array Lean.Expr Γ— Array Lean.BinderInfo Γ— Lean.Expr β†’ Sort u_1) β†’ (__discr : Array Lean.Expr Γ— Array Lean.BinderInfo Γ— Lean.Expr) β†’ ((xs : Array Lean.Expr) β†’ (fst : Array Lean.BinderInfo) β†’ (targetTy : Lean.Expr) β†’ motive (xs, fst, targetTy)) β†’ motive __discr
_private.Mathlib.MeasureTheory.Group.Integral.0.MeasureTheory.integral_eq_zero_of_mul_right_eq_neg._simp_1_2
Mathlib.MeasureTheory.Group.Integral
βˆ€ {Ξ± : Type u_1} {G : Type u_5} [inst : NormedAddCommGroup G] [inst_1 : NormedSpace ℝ G] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} (f : Ξ± β†’ G), -∫ (a : Ξ±), f a βˆ‚ΞΌ = ∫ (a : Ξ±), -f a βˆ‚ΞΌ
mem_leftCoset_leftCoset
Mathlib.GroupTheory.Coset.Basic
βˆ€ {Ξ± : Type u_1} [inst : Monoid Ξ±] (s : Submonoid Ξ±) {a : Ξ±}, a β€’ ↑s = ↑s β†’ a ∈ s
Real.geom_mean_le_arith_mean4_weighted
Mathlib.Analysis.MeanInequalities
βˆ€ {w₁ wβ‚‚ w₃ wβ‚„ p₁ pβ‚‚ p₃ pβ‚„ : ℝ}, 0 ≀ w₁ β†’ 0 ≀ wβ‚‚ β†’ 0 ≀ w₃ β†’ 0 ≀ wβ‚„ β†’ 0 ≀ p₁ β†’ 0 ≀ pβ‚‚ β†’ 0 ≀ p₃ β†’ 0 ≀ pβ‚„ β†’ w₁ + wβ‚‚ + w₃ + wβ‚„ = 1 β†’ p₁ ^ w₁ * pβ‚‚ ^ wβ‚‚ * p₃ ^ w₃ * pβ‚„ ^ wβ‚„ ≀ w₁ * p₁ + wβ‚‚ * pβ‚‚ + w₃ * p₃ + wβ‚„ * pβ‚„
addSubgroupOfIdempotent._proof_3
Mathlib.GroupTheory.OrderOfElement
βˆ€ {G : Type u_1} [inst : AddGroup G] [inst_1 : Finite G] (S : Set G) (hS1 : S.Nonempty) (hS2 : S + S = S) {a : G}, a ∈ S β†’ -a ∈ addSubmonoidOfIdempotent S hS1 hS2
groupCohomology.instEpiModuleCatH2Ο€
Mathlib.RepresentationTheory.Homological.GroupCohomology.LowDegree
βˆ€ {k G : Type u} [inst : CommRing k] [inst_1 : Group G] (A : Rep k G), CategoryTheory.Epi (groupCohomology.H2Ο€ A)
CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_whisker_right._autoParam
Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
Lean.Syntax
TwoSidedIdeal.coe_equivMatricesOver_symm_apply
Mathlib.LinearAlgebra.Matrix.Ideal
βˆ€ {R : Type u_1} {n : Type u_2} [inst : NonAssocRing R] [inst_1 : Fintype n] [inst_2 : Nonempty n] [inst_3 : DecidableEq n] (I : TwoSidedIdeal (Matrix n n R)) (i j : n), ↑(TwoSidedIdeal.equivMatrix.symm I) = {x | βˆƒ N ∈ I, N i j = x}
Lean.Meta.Grind.AC.EqCnstrProof.superpose_head_idempotent.noConfusion
Lean.Meta.Tactic.Grind.AC.Types
{P : Sort u} β†’ {x : Lean.Grind.AC.Var} β†’ {c₁ : Lean.Meta.Grind.AC.EqCnstr} β†’ {x' : Lean.Grind.AC.Var} β†’ {c₁' : Lean.Meta.Grind.AC.EqCnstr} β†’ Lean.Meta.Grind.AC.EqCnstrProof.superpose_head_idempotent x c₁ = Lean.Meta.Grind.AC.EqCnstrProof.superpose_head_idempotent x' c₁' β†’ (x = x' β†’ c₁ = c₁' β†’ P) β†’ P
_private.Mathlib.Algebra.ContinuedFractions.Computation.Approximations.0.GenContFract.sub_convs_eq._simp_1_1
Mathlib.Algebra.ContinuedFractions.Computation.Approximations
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] (a : Ξ±), (a ≀ a) = True
AlgEquiv.ofInjectiveField._proof_1
Mathlib.Algebra.Algebra.Subalgebra.Basic
βˆ€ {R : Type u_3} [inst : CommSemiring R] {E : Type u_1} {F : Type u_2} [inst_1 : DivisionRing E] [inst_2 : Semiring F] [Nontrivial F] [inst_4 : Algebra R E] [inst_5 : Algebra R F] (f : E →ₐ[R] F), Function.Injective ⇑f.toRingHom
Sum.map_bijective
Mathlib.Data.Sum.Basic
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {Ξ³ : Type u_1} {Ξ΄ : Type u_2} {f : Ξ± β†’ Ξ³} {g : Ξ² β†’ Ξ΄}, Function.Bijective (Sum.map f g) ↔ Function.Bijective f ∧ Function.Bijective g
SetTheory.PGame.InvTy.leftβ‚‚.inj
Mathlib.SetTheory.Game.Basic
βˆ€ {l r : Type u} {a : l} {a_1 : SetTheory.PGame.InvTy l r true} {a_2 : l} {a_3 : SetTheory.PGame.InvTy l r true}, SetTheory.PGame.InvTy.leftβ‚‚ a a_1 = SetTheory.PGame.InvTy.leftβ‚‚ a_2 a_3 β†’ a = a_2 ∧ a_1 = a_3
Set.chainHeight_eq_top_iff
Mathlib.Order.Height
βˆ€ {Ξ± : Type u_1} (s : Set Ξ±) (r : Ξ± β†’ Ξ± β†’ Prop), s.chainHeight r = ⊀ ↔ βˆ€ (n : β„•), βˆƒ t βŠ† s, t.encard = ↑n ∧ IsChain r t
SubAddAction.ofStabilizer.conjMap._proof_5
Mathlib.GroupTheory.GroupAction.SubMulAction.OfStabilizer
βˆ€ {G : Type u_1} [inst : AddGroup G] {Ξ± : Type u_2} [inst_1 : AddAction G Ξ±] {g : G} {a b : Ξ±} (hg : b = g +α΅₯ a) (x : β†₯(AddAction.stabilizer G a)) (x_1 : β†₯(SubAddAction.ofStabilizer G a)), ⟨g +α΅₯ ↑(x +α΅₯ x_1), β‹―βŸ© = (AddAction.stabilizerEquivStabilizer hg) x +α΅₯ ⟨g +α΅₯ ↑x_1, β‹―βŸ©
_private.Init.Data.UInt.Bitwise.0.UInt8.xor_eq_zero_iff._simp_1_1
Init.Data.UInt.Bitwise
βˆ€ {a b : UInt8}, (a = b) = (a.toBitVec = b.toBitVec)
Lean.Elab.CompletionInfo.option.inj
Lean.Elab.InfoTree.Types
βˆ€ {stx stx_1 : Lean.Syntax}, Lean.Elab.CompletionInfo.option stx = Lean.Elab.CompletionInfo.option stx_1 β†’ stx = stx_1
CategoryTheory.ShortComplex.LeftHomologyData.copy._proof_1
Mathlib.Algebra.Homology.ShortComplex.LeftHomology
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] {S : CategoryTheory.ShortComplex C} (h : S.LeftHomologyData) {K' : C} (eK : K' β‰… h.K), CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp eK.hom h.i) S.g = 0
Lean.Expr.name?
Lean.Util.Recognizers
Lean.Expr β†’ Option Lean.Name
CochainComplex.of._proof_3
Mathlib.Algebra.Homology.HomologicalComplex
βˆ€ {V : Type u_3} [inst : CategoryTheory.Category.{u_2, u_3} V] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms V] {Ξ± : Type u_1} [inst_2 : AddRightCancelSemigroup Ξ±] [inst_3 : One Ξ±] [inst_4 : DecidableEq Ξ±] (X : Ξ± β†’ V) (d : (n : Ξ±) β†’ X n ⟢ X (n + 1)), (βˆ€ (n : Ξ±), CategoryTheory.CategoryStruct.comp (d n) (d (n + 1)) = 0) β†’ βˆ€ (i j k : Ξ±), (ComplexShape.up Ξ±).Rel i j β†’ (ComplexShape.up Ξ±).Rel j k β†’ CategoryTheory.CategoryStruct.comp (if h : i + 1 = j then CategoryTheory.CategoryStruct.comp (d i) (CategoryTheory.eqToHom β‹―) else 0) (if h : j + 1 = k then CategoryTheory.CategoryStruct.comp (d j) (CategoryTheory.eqToHom β‹―) else 0) = 0
_private.Mathlib.RingTheory.WittVector.StructurePolynomial.0.wittStructureRat_vars._proof_1_5
Mathlib.RingTheory.WittVector.StructurePolynomial
βˆ€ {idx : Type u_1} (n k : β„•) (i : idx), βˆ€ j < k + 1, k ∈ Finset.range (n + 1) β†’ (i, j).2 < n + 1
Measurable.coe_real_ereal
Mathlib.MeasureTheory.Constructions.BorelSpace.Real
βˆ€ {Ξ± : Type u_1} {mΞ± : MeasurableSpace Ξ±} {f : Ξ± β†’ ℝ}, Measurable f β†’ Measurable fun x => ↑(f x)
NFA.evalFrom_append
Mathlib.Computability.NFA
βˆ€ {Ξ± : Type u} {Οƒ : Type v} (M : NFA Ξ± Οƒ) (S : Set Οƒ) (x y : List Ξ±), M.evalFrom S (x ++ y) = M.evalFrom (M.evalFrom S x) y
Monoid.Coprod.fst
Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} β†’ {N : Type u_2} β†’ [inst : Monoid M] β†’ [inst_1 : Monoid N] β†’ Monoid.Coprod M N β†’* M
_private.Mathlib.Analysis.Calculus.ContDiff.Defs.0.ContDiffWithinAt.congr_of_eventuallyEq.match_1_1
Mathlib.Analysis.Calculus.ContDiff.Defs
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {s : Set E} {f : E β†’ F} {x : E} (motive : (n : WithTop β„•βˆž) β†’ ContDiffWithinAt π•œ n f s x β†’ Prop) (n : WithTop β„•βˆž) (h : ContDiffWithinAt π•œ n f s x), (βˆ€ (h : ContDiffWithinAt π•œ ⊀ f s x), motive none h) β†’ (βˆ€ (n : β„•βˆž) (h : ContDiffWithinAt π•œ (↑n) f s x), motive (some n) h) β†’ motive n h
CategoryTheory.Sheaf.instCreatesLimitFunctorOppositeSheafToPresheaf._proof_3
Mathlib.CategoryTheory.Sites.Limits
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{u_4, u_1} C] {J : CategoryTheory.GrothendieckTopology C} {D : Type u_3} [inst_1 : CategoryTheory.Category.{u_2, u_3} D] {K : Type u_6} [inst_2 : CategoryTheory.Category.{u_5, u_6} K] [inst_3 : CategoryTheory.Limits.HasLimitsOfShape K D] (F : CategoryTheory.Functor K (CategoryTheory.Sheaf J D)) (E : CategoryTheory.Limits.Cone (F.comp (CategoryTheory.sheafToPresheaf J D))) (hE : CategoryTheory.Limits.IsLimit E) (S : CategoryTheory.Limits.Cone F) (m : S.pt ⟢ { pt := { val := E.pt, cond := β‹― }, Ο€ := { app := fun x => { val := E.Ο€.app x }, naturality := β‹― } }.pt), (βˆ€ (j : K), CategoryTheory.CategoryStruct.comp m ({ pt := { val := E.pt, cond := β‹― }, Ο€ := { app := fun x => { val := E.Ο€.app x }, naturality := β‹― } }.Ο€.app j) = S.Ο€.app j) β†’ m = { val := hE.lift ((CategoryTheory.sheafToPresheaf J D).mapCone S) }
ProfiniteGrp.coe_comp
Mathlib.Topology.Algebra.Category.ProfiniteGrp.Basic
βˆ€ {X Y Z : ProfiniteGrp.{u_1}} (f : X ⟢ Y) (g : Y ⟢ Z), ⇑(ProfiniteGrp.Hom.hom (CategoryTheory.CategoryStruct.comp f g)) = ⇑(ProfiniteGrp.Hom.hom g) ∘ ⇑(ProfiniteGrp.Hom.hom f)
Option.toArray_pmap
Init.Data.Option.Attach
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {p : Ξ± β†’ Prop} {o : Option Ξ±} {f : (a : Ξ±) β†’ p a β†’ Ξ²} (h : βˆ€ (a : Ξ±), o = some a β†’ p a), (Option.pmap f o h).toArray = Array.map (fun x => f ↑x β‹―) o.attach.toArray
IntermediateField.extendScalars_self
Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
βˆ€ {K : Type u_1} [inst : Field K] {L : Type u_2} [inst_1 : Field L] [inst_2 : Algebra K L] (F : IntermediateField K L), IntermediateField.extendScalars β‹― = βŠ₯
noConfusionTypeEnum
Init.Core
{Ξ± : Sort u} β†’ {Ξ² : Sort v} β†’ [inst : DecidableEq Ξ²] β†’ (Ξ± β†’ Ξ²) β†’ Sort w β†’ Ξ± β†’ Ξ± β†’ Sort w
Subfield.extendScalars.orderIso._proof_5
Mathlib.FieldTheory.IntermediateField.Basic
βˆ€ {L : Type u_1} [inst : Field L] (F : Subfield L) (E : IntermediateField (β†₯F) L) (x : L) (hx : x ∈ F), (algebraMap (β†₯F) L) ⟨x, hx⟩ ∈ E
Lean.Lsp.SemanticTokenType.leanSorryLike
Lean.Data.Lsp.LanguageFeatures
Lean.Lsp.SemanticTokenType
Std.DTreeMap.Raw.Const.mem_iff_isSome_get?
Std.Data.DTreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {Ξ² : Type v} {t : Std.DTreeMap.Raw Ξ± (fun x => Ξ²) cmp} [Std.TransCmp cmp], t.WF β†’ βˆ€ {a : Ξ±}, a ∈ t ↔ (Std.DTreeMap.Raw.Const.get? t a).isSome = true
Mathlib.Tactic.Ring.evalAddOverlap._proof_1
Mathlib.Tactic.Ring.Basic
βˆ€ {u : Lean.Level} {Ξ± : Q(Type u)} (a₁ b₁ : Q(Β«$Ξ±Β»)), Β«$a₁» =Q Β«$b₁»
_private.Mathlib.LinearAlgebra.Matrix.Transvection.0.Matrix.Pivot.listTransvecCol_mul_last_col._simp_1_7
Mathlib.LinearAlgebra.Matrix.Transvection
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] (a : Ξ±), (a ≀ a) = True
ZetaAsymptotics.zeta_limit_aux1
Mathlib.NumberTheory.Harmonic.ZetaAsymp
βˆ€ {s : ℝ}, 1 < s β†’ βˆ‘' (n : β„•), 1 / (↑n + 1) ^ s - 1 / (s - 1) = 1 - s * ZetaAsymptotics.term_tsum s
Std.Internal.Async.IO.AsyncWrite.mk.noConfusion
Std.Internal.Async.IO
{Ξ± Ξ² : Type} β†’ {P : Sort u} β†’ {write : Ξ± β†’ Ξ² β†’ Std.Internal.IO.Async.Async Unit} β†’ {writeAll : Ξ± β†’ Array Ξ² β†’ Std.Internal.IO.Async.Async Unit} β†’ {flush : Ξ± β†’ Std.Internal.IO.Async.Async Unit} β†’ {write' : Ξ± β†’ Ξ² β†’ Std.Internal.IO.Async.Async Unit} β†’ {writeAll' : Ξ± β†’ Array Ξ² β†’ Std.Internal.IO.Async.Async Unit} β†’ {flush' : Ξ± β†’ Std.Internal.IO.Async.Async Unit} β†’ { write := write, writeAll := writeAll, flush := flush } = { write := write', writeAll := writeAll', flush := flush' } β†’ (write ≍ write' β†’ writeAll ≍ writeAll' β†’ flush ≍ flush' β†’ P) β†’ P
Subfield.copy._proof_6
Mathlib.Algebra.Field.Subfield.Defs
βˆ€ {K : Type u_1} [inst : DivisionRing K] (S : Subfield K) (s : Set K), s = ↑S β†’ βˆ€ x ∈ s, x⁻¹ ∈ s
Lean.IR.EmitLLVM.emitDel
Lean.Compiler.IR.EmitLLVM
{llvmctx : LLVM.Context} β†’ LLVM.Builder llvmctx β†’ Lean.IR.VarId β†’ Lean.IR.EmitLLVM.M llvmctx Unit
List.max?_eq_some_iff'
Init.Data.List.Nat.Basic
βˆ€ {a : β„•} {xs : List β„•}, xs.max? = some a ↔ a ∈ xs ∧ βˆ€ b ∈ xs, b ≀ a
PiTensorProduct.reindex_trans
Mathlib.LinearAlgebra.PiTensorProduct
βˆ€ {ΞΉ : Type u_1} {ΞΉβ‚‚ : Type u_2} {ι₃ : Type u_3} {R : Type u_4} [inst : CommSemiring R] {s : ΞΉ β†’ Type u_7} [inst_1 : (i : ΞΉ) β†’ AddCommMonoid (s i)] [inst_2 : (i : ΞΉ) β†’ Module R (s i)] (e : ΞΉ ≃ ΞΉβ‚‚) (e' : ΞΉβ‚‚ ≃ ι₃), PiTensorProduct.reindex R s e β‰ͺ≫ₗ PiTensorProduct.reindex R (fun i => s (e.symm i)) e' = PiTensorProduct.reindex R s (e.trans e')
_private.Init.Data.Iterators.Lemmas.Consumers.Monadic.Loop.0.Std.Iterators.IteratorLoop.finiteForIn'.eq_1
Init.Data.Iterators.Lemmas.Consumers.Monadic.Loop
βˆ€ {m : Type w β†’ Type w'} {n : Type x β†’ Type x'} {Ξ± Ξ² : Type w} [inst : Std.Iterators.Iterator Ξ± m Ξ²] [inst_1 : Std.Iterators.IteratorLoop Ξ± m n] [inst_2 : Monad n] (lift : (Ξ³ : Type w) β†’ (Ξ΄ : Type x) β†’ (Ξ³ β†’ n Ξ΄) β†’ m Ξ³ β†’ n Ξ΄), Std.Iterators.IteratorLoop.finiteForIn' lift = { forIn' := fun {Ξ³} it init f => Std.Iterators.IteratorLoop.forIn lift Ξ³ (fun x x_1 x_2 => True) it init fun x1 x2 x3 => do let __do_lift ← f x1 x2 x3 pure ⟨__do_lift, trivial⟩ }
Polynomial.Gal.instUniqueOfFactSplits
Mathlib.FieldTheory.PolynomialGaloisGroup
{F : Type u_1} β†’ [inst : Field F] β†’ (p : Polynomial F) β†’ [h : Fact p.Splits] β†’ Unique p.Gal
Matroid.loopyOn_isBasis_iff
Mathlib.Combinatorics.Matroid.Constructions
βˆ€ {Ξ± : Type u_1} {E I X : Set Ξ±}, (Matroid.loopyOn E).IsBasis I X ↔ I = βˆ… ∧ X βŠ† E
_private.Mathlib.Order.Antichain.0.IsMaxAntichain.nonempty_iff._simp_1_1
Mathlib.Order.Antichain
βˆ€ {Ξ± : Type u} {s : Set Ξ±}, (Β¬s.Nonempty) = (s = βˆ…)
EsakiaHom.toPseudoEpimorphism
Mathlib.Topology.Order.Hom.Esakia
{Ξ± : Type u_2} β†’ {Ξ² : Type u_3} β†’ [inst : TopologicalSpace Ξ±] β†’ [inst_1 : Preorder Ξ±] β†’ [inst_2 : TopologicalSpace Ξ²] β†’ [inst_3 : Preorder Ξ²] β†’ EsakiaHom Ξ± Ξ² β†’ PseudoEpimorphism Ξ± Ξ²
IndepMatroid.ofFinitaryCardAugment_E
Mathlib.Combinatorics.Matroid.IndepAxioms
βˆ€ {Ξ± : Type u_1} (E : Set Ξ±) (Indep : Set Ξ± β†’ Prop) (indep_empty : Indep βˆ…) (indep_subset : βˆ€ ⦃I J : Set α⦄, Indep J β†’ I βŠ† J β†’ Indep I) (indep_aug : βˆ€ ⦃I J : Set α⦄, Indep I β†’ I.Finite β†’ Indep J β†’ J.Finite β†’ I.ncard < J.ncard β†’ βˆƒ e ∈ J, e βˆ‰ I ∧ Indep (insert e I)) (indep_compact : βˆ€ (I : Set Ξ±), (βˆ€ J βŠ† I, J.Finite β†’ Indep J) β†’ Indep I) (subset_ground : βˆ€ (I : Set Ξ±), Indep I β†’ I βŠ† E), (IndepMatroid.ofFinitaryCardAugment E Indep indep_empty indep_subset indep_aug indep_compact subset_ground).E = E
ZLattice.sum_piFinset_Icc_rpow_le
Mathlib.Algebra.Module.ZLattice.Summable
βˆ€ {E : Type u_1} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] [inst_2 : FiniteDimensional ℝ E] {L : Submodule β„€ E} [inst_3 : DiscreteTopology β†₯L] {ΞΉ : Type u_3} [inst_4 : Fintype ΞΉ] [inst_5 : DecidableEq ΞΉ] (b : Module.Basis ΞΉ β„€ β†₯L) {d : β„•}, d = Fintype.card ΞΉ β†’ βˆ€ (n : β„•), βˆ€ r < -↑d, βˆ‘ p ∈ Fintype.piFinset fun x => Finset.Icc (-↑n) ↑n, β€–βˆ‘ i, p i β€’ b iβ€– ^ r ≀ 2 * ↑d * 3 ^ (d - 1) * ZLattice.normBound b ^ r * βˆ‘' (k : β„•), ↑k ^ (↑d - 1 + r)
_private.Mathlib.ModelTheory.Encoding.0.FirstOrder.Language.BoundedFormula.listEncode.match_1.eq_5
Mathlib.ModelTheory.Encoding
βˆ€ {L : FirstOrder.Language} {Ξ± : Type u_3} (motive : (x : β„•) β†’ L.BoundedFormula Ξ± x β†’ Sort u_4) (x : β„•) (Ο† : L.BoundedFormula Ξ± (x + 1)) (h_1 : (n : β„•) β†’ motive n FirstOrder.Language.BoundedFormula.falsum) (h_2 : (x : β„•) β†’ (t₁ tβ‚‚ : L.Term (Ξ± βŠ• Fin x)) β†’ motive x (FirstOrder.Language.BoundedFormula.equal t₁ tβ‚‚)) (h_3 : (n l : β„•) β†’ (R : L.Relations l) β†’ (ts : Fin l β†’ L.Term (Ξ± βŠ• Fin n)) β†’ motive n (FirstOrder.Language.BoundedFormula.rel R ts)) (h_4 : (x : β„•) β†’ (φ₁ Ο†β‚‚ : L.BoundedFormula Ξ± x) β†’ motive x (φ₁.imp Ο†β‚‚)) (h_5 : (x : β„•) β†’ (Ο† : L.BoundedFormula Ξ± (x + 1)) β†’ motive x Ο†.all), (match x, Ο†.all with | n, FirstOrder.Language.BoundedFormula.falsum => h_1 n | x, FirstOrder.Language.BoundedFormula.equal t₁ tβ‚‚ => h_2 x t₁ tβ‚‚ | n, FirstOrder.Language.BoundedFormula.rel R ts => h_3 n l R ts | x, φ₁.imp Ο†β‚‚ => h_4 x φ₁ Ο†β‚‚ | x, Ο†.all => h_5 x Ο†) = h_5 x Ο†
Lean.Elab.instInhabitedDefViewElabHeaderData.default
Lean.Elab.DefView
Lean.Elab.DefViewElabHeaderData
CochainComplex.mappingCone.mapOfHomotopy
Mathlib.Algebra.Homology.HomotopyCategory.Pretriangulated
{C : Type u_1} β†’ [inst : CategoryTheory.Category.{v_1, u_1} C] β†’ [inst_1 : CategoryTheory.Preadditive C] β†’ [inst_2 : CategoryTheory.Limits.HasBinaryBiproducts C] β†’ {K₁ L₁ Kβ‚‚ Lβ‚‚ : CochainComplex C β„€} β†’ {φ₁ : K₁ ⟢ L₁} β†’ {Ο†β‚‚ : Kβ‚‚ ⟢ Lβ‚‚} β†’ {a : K₁ ⟢ Kβ‚‚} β†’ {b : L₁ ⟢ Lβ‚‚} β†’ Homotopy (CategoryTheory.CategoryStruct.comp φ₁ b) (CategoryTheory.CategoryStruct.comp a Ο†β‚‚) β†’ (CochainComplex.mappingCone φ₁ ⟢ CochainComplex.mappingCone Ο†β‚‚)
DivisionRing.nnratCast_def
Mathlib.Algebra.Field.Defs
βˆ€ {K : Type u_2} [self : DivisionRing K] (q : β„šβ‰₯0), ↑q = ↑q.num / ↑q.den
IsLocalization.noZeroDivisors
Mathlib.RingTheory.Localization.Defs
βˆ€ {R : Type u_1} [inst : CommSemiring R] (M : Submonoid R) {S : Type u_2} [inst_1 : CommSemiring S] [inst_2 : Algebra R S] [IsLocalization M S] [NoZeroDivisors R], NoZeroDivisors S
Std.OrientedCmp.not_isGE_of_gt
Init.Data.Order.Ord
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} [Std.OrientedCmp cmp] {a b : Ξ±}, cmp a b = Ordering.gt β†’ Β¬(cmp b a).isGE = true
CategoryTheory.Localization.liftβ‚‚NatIso.eq_1
Mathlib.CategoryTheory.Localization.Monoidal.Braided
βˆ€ {C₁ : Type u_1} {Cβ‚‚ : Type u_2} {D₁ : Type u_3} {Dβ‚‚ : Type u_4} {E : Type u_5} [inst : CategoryTheory.Category.{v_1, u_1} C₁] [inst_1 : CategoryTheory.Category.{v_2, u_2} Cβ‚‚] [inst_2 : CategoryTheory.Category.{v_3, u_3} D₁] [inst_3 : CategoryTheory.Category.{v_4, u_4} Dβ‚‚] [inst_4 : CategoryTheory.Category.{v_5, u_5} E] (L₁ : CategoryTheory.Functor C₁ D₁) (Lβ‚‚ : CategoryTheory.Functor Cβ‚‚ Dβ‚‚) (W₁ : CategoryTheory.MorphismProperty C₁) (Wβ‚‚ : CategoryTheory.MorphismProperty Cβ‚‚) [inst_5 : L₁.IsLocalization W₁] [inst_6 : Lβ‚‚.IsLocalization Wβ‚‚] [inst_7 : W₁.ContainsIdentities] [inst_8 : Wβ‚‚.ContainsIdentities] (F₁ Fβ‚‚ : CategoryTheory.Functor C₁ (CategoryTheory.Functor Cβ‚‚ E)) (F₁' Fβ‚‚' : CategoryTheory.Functor D₁ (CategoryTheory.Functor Dβ‚‚ E)) [inst_9 : CategoryTheory.Localization.Liftingβ‚‚ L₁ Lβ‚‚ W₁ Wβ‚‚ F₁ F₁'] [inst_10 : CategoryTheory.Localization.Liftingβ‚‚ L₁ Lβ‚‚ W₁ Wβ‚‚ Fβ‚‚ Fβ‚‚'] (e : F₁ β‰… Fβ‚‚), CategoryTheory.Localization.liftβ‚‚NatIso L₁ Lβ‚‚ W₁ Wβ‚‚ F₁ Fβ‚‚ F₁' Fβ‚‚' e = { hom := CategoryTheory.Localization.liftβ‚‚NatTrans L₁ Lβ‚‚ W₁ Wβ‚‚ F₁ Fβ‚‚ F₁' Fβ‚‚' e.hom, inv := CategoryTheory.Localization.liftβ‚‚NatTrans L₁ Lβ‚‚ W₁ Wβ‚‚ Fβ‚‚ F₁ Fβ‚‚' F₁' e.inv, hom_inv_id := β‹―, inv_hom_id := β‹― }
Continuous.cfcβ‚™_nnreal._auto_1
Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
Lean.Syntax
Std.Time.Modifier.Z
Std.Time.Format.Basic
Std.Time.OffsetZ β†’ Std.Time.Modifier
Lean.Lsp.instToJsonInlayHintKind.match_1
Lean.Data.Lsp.LanguageFeatures
(motive : Lean.Lsp.InlayHintKind β†’ Sort u_1) β†’ (x : Lean.Lsp.InlayHintKind) β†’ (Unit β†’ motive Lean.Lsp.InlayHintKind.type) β†’ (Unit β†’ motive Lean.Lsp.InlayHintKind.parameter) β†’ motive x
differentiableAt_add_const_iff._simp_1
Mathlib.Analysis.Calculus.FDeriv.Add
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {f : E β†’ F} {x : E} (c : F), DifferentiableAt π•œ (fun y => f y + c) x = DifferentiableAt π•œ f x
Lean.Meta.Occurrences.rec
Init.MetaTypes
{motive : Lean.Meta.Occurrences β†’ Sort u} β†’ motive Lean.Meta.Occurrences.all β†’ ((idxs : List β„•) β†’ motive (Lean.Meta.Occurrences.pos idxs)) β†’ ((idxs : List β„•) β†’ motive (Lean.Meta.Occurrences.neg idxs)) β†’ (t : Lean.Meta.Occurrences) β†’ motive t
_private.Mathlib.MeasureTheory.Integral.Lebesgue.Basic.0.MeasureTheory.le_iInf_lintegral._simp_1_1
Mathlib.MeasureTheory.Integral.Lebesgue.Basic
βˆ€ {Ξ± : Type u_8} {Ξ² : Ξ± β†’ Type u_9} {ΞΉ : Sort u_10} [inst : (i : Ξ±) β†’ InfSet (Ξ² i)] {f : ΞΉ β†’ (a : Ξ±) β†’ Ξ² a} {a : Ξ±}, β¨… i, f i a = (β¨… i, f i) a