name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Std.DTreeMap.Internal.Impl.link2._proof_19
Std.Data.DTreeMap.Internal.Operations
βˆ€ {Ξ± : Type u_1} {Ξ² : Ξ± β†’ Type u_2} (l r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) (szl : β„•) (k' : Ξ±) (v' : Ξ² k') (l' r' : Std.DTreeMap.Internal.Impl Ξ± Ξ²), (Std.DTreeMap.Internal.Impl.inner szl k' v' l' r').Balanced β†’ l = Std.DTreeMap.Internal.Impl.inner szl k' v' l' r' β†’ βˆ€ (szr : β„•) (k'' : Ξ±) (v'' : Ξ² k'') (l'' r'' : Std.DTreeMap.Internal.Impl Ξ± Ξ²), (Std.DTreeMap.Internal.Impl.inner szr k'' v'' l'' r'').Balanced β†’ r = Std.DTreeMap.Internal.Impl.inner szr k'' v'' l'' r'' β†’ l''.Balanced
Homotopy.ext
Mathlib.Algebra.Homology.Homotopy
βˆ€ {ΞΉ : Type u_1} {V : Type u} {inst : CategoryTheory.Category.{v, u} V} {inst_1 : CategoryTheory.Preadditive V} {c : ComplexShape ΞΉ} {C D : HomologicalComplex V c} {f g : C ⟢ D} {x y : Homotopy f g}, x.hom = y.hom β†’ x = y
ContinuousLinearMap.cont._autoParam
Mathlib.Topology.Algebra.Module.LinearMap
Lean.Syntax
_private.Lean.Data.Json.Printer.0.Lean.Json.needEscape.go._proof_3
Lean.Data.Json.Printer
βˆ€ (s : String), βˆ€ i < s.utf8ByteSize, InvImage (fun x1 x2 => x1 < x2) (fun x => s.utf8ByteSize - x) (i + 1) i
Lean.Elab.ComputedFields.Context.compFieldVars
Lean.Elab.ComputedFields
Lean.Elab.ComputedFields.Context β†’ Array Lean.Expr
WithTop.instOrderedSub
Mathlib.Algebra.Order.Sub.WithTop
βˆ€ {Ξ± : Type u_1} [inst : Add Ξ±] [inst_1 : LE Ξ±] [inst_2 : OrderBot Ξ±] [inst_3 : Sub Ξ±] [OrderedSub Ξ±], OrderedSub (WithTop Ξ±)
CoalgCat.Hom.casesOn
Mathlib.Algebra.Category.CoalgCat.Basic
{R : Type u} β†’ [inst : CommRing R] β†’ {V W : CoalgCat R} β†’ {motive : V.Hom W β†’ Sort u_1} β†’ (t : V.Hom W) β†’ ((toCoalgHom' : ↑V.toModuleCat β†’β‚—c[R] ↑W.toModuleCat) β†’ motive { toCoalgHom' := toCoalgHom' }) β†’ motive t
AddSemigroupIdeal.coe_closure'
Mathlib.Algebra.Group.Ideal
βˆ€ {M : Type u_1} [inst : AddMonoid M] {s : Set M}, ↑(AddSemigroupIdeal.closure s) = Set.univ + s
Finset.Colex._sizeOf_1
Mathlib.Combinatorics.Colex
{Ξ± : Type u_3} β†’ [SizeOf Ξ±] β†’ Finset.Colex Ξ± β†’ β„•
zpow_natCast
Mathlib.Algebra.Group.Defs
βˆ€ {G : Type u_1} [inst : DivInvMonoid G] (a : G) (n : β„•), a ^ ↑n = a ^ n
SimplicialObject.Split.nondegComplexFunctor_map_f
Mathlib.AlgebraicTopology.DoldKan.SplitSimplicialObject
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{v_1, u_1} C] [inst_1 : CategoryTheory.Preadditive C] {S₁ Sβ‚‚ : SimplicialObject.Split C} (Ξ¦ : S₁ ⟢ Sβ‚‚) (n : β„•), (SimplicialObject.Split.nondegComplexFunctor.map Ξ¦).f n = Ξ¦.f n
Lean.Meta.TransparencyMode.reducible
Init.MetaTypes
Lean.Meta.TransparencyMode
intervalIntegral.integral_mono_on_of_le_Ioo
Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
βˆ€ {f g : ℝ β†’ ℝ} {a b : ℝ} {ΞΌ : MeasureTheory.Measure ℝ}, a ≀ b β†’ IntervalIntegrable f ΞΌ a b β†’ IntervalIntegrable g ΞΌ a b β†’ βˆ€ [MeasureTheory.NoAtoms ΞΌ], (βˆ€ x ∈ Set.Ioo a b, f x ≀ g x) β†’ ∫ (u : ℝ) in a..b, f u βˆ‚ΞΌ ≀ ∫ (u : ℝ) in a..b, g u βˆ‚ΞΌ
CategoryTheory.locallyDiscreteBicategory._proof_17
Mathlib.CategoryTheory.Bicategory.LocallyDiscrete
βˆ€ (C : Type u_1) [inst : CategoryTheory.Category.{u_2, u_1} C] {a b c d : CategoryTheory.LocallyDiscrete C} {f f' : a ⟢ b} (Ξ· : f ⟢ f') (g : b ⟢ c) (h : c ⟢ d), CategoryTheory.eqToHom β‹― = CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom β‹―) (CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom β‹―) (CategoryTheory.eqToHom β‹―))
Aesop.instInhabitedRulePattern
Aesop.RulePattern
Inhabited Aesop.RulePattern
Lean.Meta.getCoeFnInfo?
Lean.Meta.CoeAttr
Lean.Name β†’ Lean.CoreM (Option Lean.Meta.CoeFnInfo)
AddEquiv.symm_map_add
Mathlib.Algebra.Group.Equiv.Defs
βˆ€ {M : Type u_9} {N : Type u_10} [inst : Add M] [inst_1 : Add N] (h : M ≃+ N) (x y : N), h.symm (x + y) = h.symm x + h.symm y
MvPolynomial.instIsPushout
Mathlib.RingTheory.TensorProduct.MvPolynomial
βˆ€ {R : Type u} [inst : CommSemiring R] {Οƒ : Type u_1} {S : Type u_3} [inst_1 : CommSemiring S] [inst_2 : Algebra R S], Algebra.IsPushout R S (MvPolynomial Οƒ R) (MvPolynomial Οƒ S)
Aesop.UnsafeRuleInfo.mk.injEq
Aesop.Rule
βˆ€ (successProbability successProbability_1 : Aesop.Percent), ({ successProbability := successProbability } = { successProbability := successProbability_1 }) = (successProbability = successProbability_1)
QuadraticAlgebra.mk_eq_add_smul_omega
Mathlib.Algebra.QuadraticAlgebra.Basic
βˆ€ {R : Type u_1} {a b : R} [inst : CommSemiring R] (x y : R), { re := x, im := y } = (algebraMap R (QuadraticAlgebra R a b)) x + y β€’ QuadraticAlgebra.omega
UniformFun.uniformCore.match_7
Mathlib.Topology.UniformSpace.UniformConvergenceTopology
βˆ€ (Ξ² : Type u_1) [inst : UniformSpace Ξ²] (w : Set (Ξ² Γ— Ξ²)) (motive : (βˆƒ t ∈ uniformity Ξ², SetRel.comp t t βŠ† w) β†’ Prop) (x : βˆƒ t ∈ uniformity Ξ², SetRel.comp t t βŠ† w), (βˆ€ (W : Set (Ξ² Γ— Ξ²)) (hW : W ∈ uniformity Ξ²) (hWV : SetRel.comp W W βŠ† w), motive β‹―) β†’ motive x
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.Const.getKey!_alter._simp_1_2
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {instOrd : Ord Ξ±} {a b : Ξ±}, (compare a b β‰  Ordering.eq) = ((a == b) = false)
tsum_geometric_two'
Mathlib.Analysis.SpecificLimits.Basic
βˆ€ (a : ℝ), βˆ‘' (n : β„•), a / 2 / 2 ^ n = a
_private.Std.Data.DHashMap.Internal.Defs.0.Std.DHashMap.Internal.Rawβ‚€.insert._proof_3
Std.Data.DHashMap.Internal.Defs
βˆ€ {Ξ± : Type u_1} {Ξ² : Ξ± β†’ Type u_2} (a : Ξ±) (b : Ξ² a) (size : β„•) (buckets : Array (Std.DHashMap.Internal.AssocList Ξ± Ξ²)), 0 < { size := size, buckets := buckets }.buckets.size β†’ βˆ€ (i : USize) (h : i.toNat < buckets.size), 0 < { size := size + 1, buckets := buckets.uset i (Std.DHashMap.Internal.AssocList.cons a b buckets[i]) h }.buckets.size
Lean.instReprDefinitionSafety
Lean.Declaration
Repr Lean.DefinitionSafety
Aesop.Script.StaticStructureM.Context._sizeOf_1
Aesop.Script.StructureStatic
Aesop.Script.StaticStructureM.Context β†’ β„•
Lean.VersoModuleDocs.isEmpty
Lean.DocString.Extension
Lean.VersoModuleDocs β†’ Bool
Set.Finite.encard_biUnion_le
Mathlib.Data.Set.Card.Arithmetic
βˆ€ {Ξ± : Type u_1} {ΞΉ : Type u_2} {t : Set ΞΉ}, t.Finite β†’ βˆ€ (s : ΞΉ β†’ Set Ξ±), (⋃ i ∈ t, s i).encard ≀ βˆ‘αΆ  (i : ΞΉ) (_ : i ∈ t), (s i).encard
Set.prod_add_prod_comm
Mathlib.Algebra.Group.Pointwise.Set.Basic
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : Add Ξ±] [inst_1 : Add Ξ²] (s₁ sβ‚‚ : Set Ξ±) (t₁ tβ‚‚ : Set Ξ²), s₁ Γ—Λ’ t₁ + sβ‚‚ Γ—Λ’ tβ‚‚ = (s₁ + sβ‚‚) Γ—Λ’ (t₁ + tβ‚‚)
SpectrumRestricts.compactSpace
Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Restrict
βˆ€ {R : Type u_1} {S : Type u_2} {A : Type u_3} [inst : Semifield R] [inst_1 : Semifield S] [inst_2 : Ring A] [inst_3 : Algebra R S] [inst_4 : Algebra R A] [inst_5 : Algebra S A] [IsScalarTower R S A] [inst_7 : TopologicalSpace R] [inst_8 : TopologicalSpace S] {a : A} (f : C(S, R)), SpectrumRestricts a ⇑f β†’ βˆ€ [h_cpct : CompactSpace ↑(spectrum S a)], CompactSpace ↑(spectrum R a)
Lean.Parser.Term.num.parenthesizer
Lean.Parser.Term
Lean.PrettyPrinter.Parenthesizer
Subsemigroup.centerToMulOpposite._proof_2
Mathlib.GroupTheory.Submonoid.Center
βˆ€ {M : Type u_1} [inst : Mul M] (x : β†₯(Subsemigroup.center Mᡐᡒᡖ)), ⟨MulOpposite.op β†‘βŸ¨MulOpposite.unop ↑x, β‹―βŸ©, β‹―βŸ© = ⟨MulOpposite.op β†‘βŸ¨MulOpposite.unop ↑x, β‹―βŸ©, β‹―βŸ©
_private.Lean.Elab.DeclModifiers.0.Lean.Elab.Visibility.isPublic._sparseCasesOn_1
Lean.Elab.DeclModifiers
{motive : Lean.Elab.Visibility β†’ Sort u} β†’ (t : Lean.Elab.Visibility) β†’ motive Lean.Elab.Visibility.public β†’ (Nat.hasNotBit 4 t.ctorIdx β†’ motive t) β†’ motive t
CategoryTheory.LocalizerMorphism.homMap_comp
Mathlib.CategoryTheory.Localization.HomEquiv
βˆ€ {C₁ : Type u_2} {Cβ‚‚ : Type u_3} {D₁ : Type u_5} {Dβ‚‚ : Type u_6} [inst : CategoryTheory.Category.{v_2, u_2} C₁] [inst_1 : CategoryTheory.Category.{v_3, u_3} Cβ‚‚] [inst_2 : CategoryTheory.Category.{v_5, u_5} D₁] [inst_3 : CategoryTheory.Category.{v_6, u_6} Dβ‚‚] {W₁ : CategoryTheory.MorphismProperty C₁} {Wβ‚‚ : CategoryTheory.MorphismProperty Cβ‚‚} (Ξ¦ : CategoryTheory.LocalizerMorphism W₁ Wβ‚‚) (L₁ : CategoryTheory.Functor C₁ D₁) [inst_4 : L₁.IsLocalization W₁] (Lβ‚‚ : CategoryTheory.Functor Cβ‚‚ Dβ‚‚) [inst_5 : Lβ‚‚.IsLocalization Wβ‚‚] {X Y Z : C₁} (f : L₁.obj X ⟢ L₁.obj Y) (g : L₁.obj Y ⟢ L₁.obj Z), Ξ¦.homMap L₁ Lβ‚‚ (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (Ξ¦.homMap L₁ Lβ‚‚ f) (Ξ¦.homMap L₁ Lβ‚‚ g)
CochainComplex.HomComplex.Cochain.ofHom_v
Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preadditive C] {F G : CochainComplex C β„€} (Ο† : F ⟢ G) (p : β„€), (CochainComplex.HomComplex.Cochain.ofHom Ο†).v p p β‹― = Ο†.f p
_private.Mathlib.Data.Nat.Log.0.Nat.log.go_spec._simp_1_4
Mathlib.Data.Nat.Log
βˆ€ {n : β„•}, (1 ≀ n) = (n β‰  0)
RootPairing.EmbeddedG2.mem_span_of_mem_allRoots
Mathlib.LinearAlgebra.RootSystem.Finite.G2
βˆ€ {ΞΉ : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] [inst_3 : AddCommGroup N] [inst_4 : Module R N] (P : RootPairing ΞΉ R M N) [inst_5 : P.EmbeddedG2] [Finite ΞΉ] [CharZero R] [IsDomain R] {x : M}, x ∈ RootPairing.EmbeddedG2.allRoots P β†’ x ∈ Submodule.span β„€ {RootPairing.EmbeddedG2.longRoot P, RootPairing.EmbeddedG2.shortRoot P}
Batteries.RBNode.Balanced.below.casesOn
Batteries.Data.RBMap.Basic
βˆ€ {Ξ± : Type u_1} {motive : (a : Batteries.RBNode Ξ±) β†’ (a_1 : Batteries.RBColor) β†’ (a_2 : β„•) β†’ a.Balanced a_1 a_2 β†’ Prop} {motive_1 : {a : Batteries.RBNode Ξ±} β†’ {a_1 : Batteries.RBColor} β†’ {a_2 : β„•} β†’ (t : a.Balanced a_1 a_2) β†’ Batteries.RBNode.Balanced.below t β†’ Prop} {a : Batteries.RBNode Ξ±} {a_1 : Batteries.RBColor} {a_2 : β„•} {t : a.Balanced a_1 a_2} (t_1 : Batteries.RBNode.Balanced.below t), motive_1 β‹― β‹― β†’ (βˆ€ {x : Batteries.RBNode Ξ±} {n : β„•} {y : Batteries.RBNode Ξ±} {v : Ξ±} (a : x.Balanced Batteries.RBColor.black n) (a_3 : y.Balanced Batteries.RBColor.black n) (ih : Batteries.RBNode.Balanced.below a) (a_ih : motive x Batteries.RBColor.black n a) (ih_1 : Batteries.RBNode.Balanced.below a_3) (a_ih_1 : motive y Batteries.RBColor.black n a_3), motive_1 β‹― β‹―) β†’ (βˆ€ {x : Batteries.RBNode Ξ±} {c₁ : Batteries.RBColor} {n : β„•} {y : Batteries.RBNode Ξ±} {cβ‚‚ : Batteries.RBColor} {v : Ξ±} (a : x.Balanced c₁ n) (a_3 : y.Balanced cβ‚‚ n) (ih : Batteries.RBNode.Balanced.below a) (a_ih : motive x c₁ n a) (ih_1 : Batteries.RBNode.Balanced.below a_3) (a_ih_1 : motive y cβ‚‚ n a_3), motive_1 β‹― β‹―) β†’ motive_1 t t_1
CategoryTheory.ProjectiveResolution.ofComplex._proof_3
Mathlib.CategoryTheory.Abelian.Projective.Resolution
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.Abelian C] {Xβ‚€ X₁ : C} (f : X₁ ⟢ Xβ‚€), CategoryTheory.Limits.HasKernel f
Algebra.Etale.comp
Mathlib.RingTheory.Etale.Basic
βˆ€ (R : Type u) (A : Type v) (B : Type u_1) [inst : CommRing R] [inst_1 : CommRing A] [inst_2 : Algebra R A] [inst_3 : CommRing B] [inst_4 : Algebra R B] [inst_5 : Algebra A B] [IsScalarTower R A B] [Algebra.Etale R A] [Algebra.Etale A B], Algebra.Etale R B
EuclideanGeometry.eq_of_dist_eq_of_dist_eq_of_finrank_eq_two
Mathlib.Geometry.Euclidean.Basic
βˆ€ {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V] [inst_2 : MetricSpace P] [NormedAddTorsor V P] [FiniteDimensional ℝ V], Module.finrank ℝ V = 2 β†’ βˆ€ {c₁ cβ‚‚ p₁ pβ‚‚ p : P} {r₁ rβ‚‚ : ℝ}, c₁ β‰  cβ‚‚ β†’ p₁ β‰  pβ‚‚ β†’ dist p₁ c₁ = r₁ β†’ dist pβ‚‚ c₁ = r₁ β†’ dist p c₁ = r₁ β†’ dist p₁ cβ‚‚ = rβ‚‚ β†’ dist pβ‚‚ cβ‚‚ = rβ‚‚ β†’ dist p cβ‚‚ = rβ‚‚ β†’ p = p₁ ∨ p = pβ‚‚
Lean.Doc.Parser.InList.mk._flat_ctor
Lean.DocString.Parser
β„• β†’ Lean.Doc.Parser.OrderedListType βŠ• Lean.Doc.Parser.UnorderedListType β†’ Lean.Doc.Parser.InList
AddCircle.liftIoc_zero_continuous
Mathlib.Topology.Instances.AddCircle.Defs
βˆ€ {π•œ : Type u_1} {B : Type u_2} [inst : AddCommGroup π•œ] [inst_1 : LinearOrder π•œ] [inst_2 : IsOrderedAddMonoid π•œ] {p : π•œ} [hp : Fact (0 < p)] [inst_3 : Archimedean π•œ] [inst_4 : TopologicalSpace π•œ] [OrderTopology π•œ] [inst_6 : TopologicalSpace B] {f : π•œ β†’ B}, f 0 = f p β†’ ContinuousOn f (Set.Icc 0 p) β†’ Continuous (AddCircle.liftIoc p 0 f)
List.mem_attach
Init.Data.List.Attach
βˆ€ {Ξ± : Type u_1} (l : List Ξ±) (x : { x // x ∈ l }), x ∈ l.attach
ODE.FunSpace.mk.congr_simp
Mathlib.Analysis.ODE.PicardLindelof
βˆ€ {E : Type u_1} [inst : NormedAddCommGroup E] {tmin tmax : ℝ} {tβ‚€ : ↑(Set.Icc tmin tmax)} {xβ‚€ : E} {r L : NNReal} (toFun toFun_1 : ↑(Set.Icc tmin tmax) β†’ E) (e_toFun : toFun = toFun_1) (lipschitzWith : LipschitzWith L toFun) (mem_closedBallβ‚€ : toFun tβ‚€ ∈ Metric.closedBall xβ‚€ ↑r), { toFun := toFun, lipschitzWith := lipschitzWith, mem_closedBallβ‚€ := mem_closedBallβ‚€ } = { toFun := toFun_1, lipschitzWith := β‹―, mem_closedBallβ‚€ := β‹― }
RingHom.codomain_trivial_iff_range_trivial
Mathlib.Algebra.Ring.Hom.Defs
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} {x : NonAssocSemiring Ξ±} {x_1 : NonAssocSemiring Ξ²} (f : Ξ± β†’+* Ξ²), 0 = 1 ↔ βˆ€ (x_2 : Ξ±), f x_2 = 0
_private.Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.Mul.0.Std.Tactic.BVDecide.BVExpr.bitblast.blastMul._proof_1
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.Mul
βˆ€ {w : β„•}, Β¬w = 0 β†’ Β¬0 < w β†’ False
CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence_assoc
Mathlib.CategoryTheory.Limits.Shapes.Pullback.Categorical.CatCospanTransform
βˆ€ {A : Type u₁} {B : Type uβ‚‚} {C : Type u₃} {A' : Type uβ‚„} {B' : Type uβ‚…} {C' : Type u₆} [inst : CategoryTheory.Category.{v₁, u₁} A] [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} B] [inst_2 : CategoryTheory.Category.{v₃, u₃} C] {F : CategoryTheory.Functor A B} {G : CategoryTheory.Functor C B} [inst_3 : CategoryTheory.Category.{vβ‚„, uβ‚„} A'] [inst_4 : CategoryTheory.Category.{vβ‚…, uβ‚…} B'] [inst_5 : CategoryTheory.Category.{v₆, u₆} C'] {F' : CategoryTheory.Functor A' B'} {G' : CategoryTheory.Functor C' B'} {ψ ψ' : CategoryTheory.Limits.CatCospanTransform F G F' G'} (self : CategoryTheory.Limits.CatCospanTransformMorphism ψ ψ') {Z : CategoryTheory.Functor A B'} (h : ψ'.left.comp F' ⟢ Z), CategoryTheory.CategoryStruct.comp (CategoryTheory.CatCommSq.iso F ψ.left ψ.base F').hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.whiskerRight self.left F') h) = CategoryTheory.CategoryStruct.comp (F.whiskerLeft self.base) (CategoryTheory.CategoryStruct.comp (CategoryTheory.CatCommSq.iso F ψ'.left ψ'.base F').hom h)
_private.Lean.Meta.Tactic.Grind.Action.0.Lean.Meta.Grind.Action.orElse.eq_1
Lean.Meta.Tactic.Grind.Action
βˆ€ (x y : Lean.Meta.Grind.Action) (goal : Lean.Meta.Grind.Goal) (kna kp : Lean.Meta.Grind.ActionCont), x.orElse y goal kna kp = x goal (fun goal => y goal kna kp) kp
FinTopCat.of
Mathlib.Topology.Category.FinTopCat
(X : Type u) β†’ [Fintype X] β†’ [TopologicalSpace X] β†’ FinTopCat
Real.le_arcsin_iff_sin_le
Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
βˆ€ {x y : ℝ}, x ∈ Set.Icc (-(Real.pi / 2)) (Real.pi / 2) β†’ y ∈ Set.Icc (-1) 1 β†’ (x ≀ Real.arcsin y ↔ Real.sin x ≀ y)
CategoryTheory.Square.Hom
Mathlib.CategoryTheory.Square
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ CategoryTheory.Square C β†’ CategoryTheory.Square C β†’ Type v
RatFunc.instValuedWithZeroMultiplicativeInt._proof_4
Mathlib.FieldTheory.RatFunc.AsPolynomial
βˆ€ (K : Type u_1) [inst : Field K], IsFractionRing (Polynomial K) (RatFunc K)
Finset.instIsReflSubset
Mathlib.Data.Finset.Defs
βˆ€ {Ξ± : Type u_1}, IsRefl (Finset Ξ±) fun x1 x2 => x1 βŠ† x2
CentroidHom.centerToCentroidCenter._proof_6
Mathlib.Algebra.Ring.CentroidHom
βˆ€ {Ξ± : Type u_1} [inst : NonUnitalNonAssocSemiring Ξ±] (z : β†₯(NonUnitalSubsemiring.center Ξ±)) (b c : Ξ±), ↑z * (b * c) = ↑z * b * c
Nat.Partition.mk
Mathlib.Combinatorics.Enumerative.Partition.Basic
{n : β„•} β†’ (parts : Multiset β„•) β†’ (βˆ€ {i : β„•}, i ∈ parts β†’ 0 < i) β†’ parts.sum = n β†’ n.Partition
Lean.Meta.Grind.AC.ACM.Context.mk.inj
Lean.Meta.Tactic.Grind.AC.Util
βˆ€ {opId opId_1 : β„•}, { opId := opId } = { opId := opId_1 } β†’ opId = opId_1
spectrum.invβ‚€_mem
Mathlib.Algebra.Algebra.Spectrum.Basic
βˆ€ {R : Type u} {A : Type v} [inst : Semifield R] [inst_1 : Ring A] [inst_2 : Algebra R A] {r : R} {a : AΛ£}, r ∈ spectrum R ↑a⁻¹ β†’ r⁻¹ ∈ spectrum R ↑a
DirectLimit.instDivisionRing._proof_5
Mathlib.Algebra.Colimit.DirectLimit
βˆ€ {ΞΉ : Type u_1} [inst : Preorder ΞΉ] {G : ΞΉ β†’ Type u_2} {T : ⦃i j : ι⦄ β†’ i ≀ j β†’ Type u_3} {f : (x x_1 : ΞΉ) β†’ (h : x ≀ x_1) β†’ T h} [inst_1 : (i j : ΞΉ) β†’ (h : i ≀ j) β†’ FunLike (T h) (G i) (G j)] [inst_2 : DirectedSystem G fun x1 x2 x3 => ⇑(f x1 x2 x3)] [inst_3 : IsDirectedOrder ΞΉ] [inst_4 : Nonempty ΞΉ] [inst_5 : (i : ΞΉ) β†’ DivisionRing (G i)] [inst_6 : βˆ€ (i j : ΞΉ) (h : i ≀ j), RingHomClass (T h) (G i) (G j)] (a : DirectLimit G f), Ring.zsmul 0 a = 0
SemidirectProduct.inl._proof_1
Mathlib.GroupTheory.SemidirectProduct
βˆ€ {N : Type u_1} {G : Type u_2} [inst : Group N] [inst_1 : Group G] {Ο† : G β†’* MulAut N} (x y : N), ⟨x * y, 1⟩ = ⟨x, 1⟩ * ⟨y, 1⟩
Std.Iterators.Types.ULiftIterator.ctorIdx
Init.Data.Iterators.Combinators.Monadic.ULift
{Ξ± : Type u} β†’ {m : Type u β†’ Type u'} β†’ {n : Type (max u v) β†’ Type v'} β†’ {Ξ² : Type u} β†’ {lift : ⦃γ : Type u⦄ β†’ m Ξ³ β†’ Std.Iterators.ULiftT n Ξ³} β†’ Std.Iterators.Types.ULiftIterator Ξ± m n Ξ² lift β†’ β„•
intervalIntegral.integral_mono_on
Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
βˆ€ {f g : ℝ β†’ ℝ} {a b : ℝ} {ΞΌ : MeasureTheory.Measure ℝ}, a ≀ b β†’ IntervalIntegrable f ΞΌ a b β†’ IntervalIntegrable g ΞΌ a b β†’ (βˆ€ x ∈ Set.Icc a b, f x ≀ g x) β†’ ∫ (u : ℝ) in a..b, f u βˆ‚ΞΌ ≀ ∫ (u : ℝ) in a..b, g u βˆ‚ΞΌ
Filter.comap_cofinite_le
Mathlib.Order.Filter.Cofinite
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} (f : Ξ± β†’ Ξ²), Filter.comap f Filter.cofinite ≀ Filter.cofinite
Lean.Parser.Command.eoi._regBuiltin.Lean.Parser.Command.eoi.parenthesizer_7
Lean.Parser.Command
IO Unit
List.isEqv.match_1
Init.Data.List.Basic
{Ξ± : Type u_1} β†’ (motive : List Ξ± β†’ List Ξ± β†’ (Ξ± β†’ Ξ± β†’ Bool) β†’ Sort u_2) β†’ (x x_1 : List Ξ±) β†’ (x_2 : Ξ± β†’ Ξ± β†’ Bool) β†’ ((x : Ξ± β†’ Ξ± β†’ Bool) β†’ motive [] [] x) β†’ ((a : Ξ±) β†’ (as : List Ξ±) β†’ (b : Ξ±) β†’ (bs : List Ξ±) β†’ (eqv : Ξ± β†’ Ξ± β†’ Bool) β†’ motive (a :: as) (b :: bs) eqv) β†’ ((x x_3 : List Ξ±) β†’ (x_4 : Ξ± β†’ Ξ± β†’ Bool) β†’ motive x x_3 x_4) β†’ motive x x_1 x_2
Geometry.SimplicialComplex.faces_bot
Mathlib.Analysis.Convex.SimplicialComplex.Basic
βˆ€ {π•œ : Type u_1} {E : Type u_2} [inst : Ring π•œ] [inst_1 : PartialOrder π•œ] [inst_2 : AddCommGroup E] [inst_3 : Module π•œ E], βŠ₯.faces = βˆ…
Subring.instInfSet
Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} β†’ [inst : Ring R] β†’ InfSet (Subring R)
Lean.Lsp.instFromJsonLocation.fromJson
Lean.Data.Lsp.Basic
Lean.Json β†’ Except String Lean.Lsp.Location
Aesop.ForwardRuleMatch.foldHypsM
Aesop.Forward.Match
{M : Type u_1 β†’ Type u_2} β†’ {Οƒ : Type u_1} β†’ [Monad M] β†’ (Οƒ β†’ Lean.FVarId β†’ M Οƒ) β†’ Οƒ β†’ Aesop.ForwardRuleMatch β†’ M Οƒ
Lean.Meta.LazyDiscrTree.ImportData.casesOn
Lean.Meta.LazyDiscrTree
{motive : Lean.Meta.LazyDiscrTree.ImportData β†’ Sort u} β†’ (t : Lean.Meta.LazyDiscrTree.ImportData) β†’ ((errors : IO.Ref (Array Lean.Meta.LazyDiscrTree.ImportFailure)) β†’ motive { errors := errors }) β†’ motive t
_private.Mathlib.Data.Option.NAry.0.Option.map_mapβ‚‚_distrib_right._proof_1_1
Mathlib.Data.Option.NAry
βˆ€ {Ξ± : Type u_3} {Ξ² : Type u_4} {Ξ³ : Type u_2} {Ξ΄ : Type u_1} {f : Ξ± β†’ Ξ² β†’ Ξ³} {a : Option Ξ±} {b : Option Ξ²} {Ξ²' : Type u_5} {g : Ξ³ β†’ Ξ΄} {f' : Ξ± β†’ Ξ²' β†’ Ξ΄} {g' : Ξ² β†’ Ξ²'}, (βˆ€ (a : Ξ±) (b : Ξ²), g (f a b) = f' a (g' b)) β†’ Option.map g (Option.mapβ‚‚ f a b) = Option.mapβ‚‚ f' a (Option.map g' b)
Lean.Meta.Grind.Arith.Cutsat.DvdSolution.mk
Lean.Meta.Tactic.Grind.Arith.Cutsat.Search
β„€ β†’ β„€ β†’ Lean.Meta.Grind.Arith.Cutsat.DvdSolution
AlgEquiv.ofBijective_symm_apply_apply
Mathlib.Algebra.Algebra.Equiv
βˆ€ {R : Type uR} {A₁ : Type uA₁} {Aβ‚‚ : Type uAβ‚‚} [inst : CommSemiring R] [inst_1 : Semiring A₁] [inst_2 : Semiring Aβ‚‚] [inst_3 : Algebra R A₁] [inst_4 : Algebra R Aβ‚‚] (f : A₁ →ₐ[R] Aβ‚‚) (hf : Function.Bijective ⇑f) (x : A₁), (AlgEquiv.ofBijective f hf).symm (f x) = x
Vector.emptyWithCapacity._proof_1
Init.Data.Vector.Basic
βˆ€ {Ξ± : Type u_1}, #[].size = 0
Set.Nonempty.pow
Mathlib.Algebra.Group.Pointwise.Set.Basic
βˆ€ {Ξ± : Type u_2} [inst : Monoid Ξ±] {s : Set Ξ±}, s.Nonempty β†’ βˆ€ {n : β„•}, (s ^ n).Nonempty
Finsupp.mapRange.addMonoidHom_apply
Mathlib.Algebra.Group.Finsupp
βˆ€ {ΞΉ : Type u_1} {M : Type u_3} {N : Type u_4} [inst : AddCommMonoid M] [inst_1 : AddCommMonoid N] (f : M β†’+ N) (g : ΞΉ β†’β‚€ M), (Finsupp.mapRange.addMonoidHom f) g = Finsupp.mapRange ⇑f β‹― g
QuaternionAlgebra.natCast_imI
Mathlib.Algebra.Quaternion
βˆ€ {R : Type u_3} {c₁ cβ‚‚ c₃ : R} [inst : AddCommGroupWithOne R] (n : β„•), (↑n).imI = 0
NonUnitalNonAssocCommSemiring.toNonUnitalNonAssocSemiring
Mathlib.Algebra.Ring.Defs
{Ξ± : Type u} β†’ [self : NonUnitalNonAssocCommSemiring Ξ±] β†’ NonUnitalNonAssocSemiring Ξ±
Lean.Elab.DefKind.example.sizeOf_spec
Lean.Elab.DefView
sizeOf Lean.Elab.DefKind.example = 1
Lean.Grind.OrderedRing.pos_intCast_of_pos
Init.Grind.Ordered.Ring
βˆ€ {R : Type u} [inst : Lean.Grind.Ring R] [inst_1 : LE R] [inst_2 : LT R] [Std.LawfulOrderLT R] [inst_4 : Std.IsPreorder R] [Lean.Grind.OrderedRing R] (a : β„€), 0 < a β†’ 0 < ↑a
ZeroAtInftyContinuousMap.instNonUnitalNonAssocSemiring._proof_1
Mathlib.Topology.ContinuousMap.ZeroAtInfty
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : TopologicalSpace Ξ±] [inst_1 : TopologicalSpace Ξ²] [inst_2 : NonUnitalNonAssocSemiring Ξ²], Function.Injective fun f => ⇑f
PUnit.lcm_eq
Mathlib.Algebra.GCDMonoid.PUnit
βˆ€ {x y : PUnit.{u_1 + 1}}, lcm x y = PUnit.unit
Metric.thickening_subset_cthickening_of_le
Mathlib.Topology.MetricSpace.Thickening
βˆ€ {Ξ± : Type u} [inst : PseudoEMetricSpace Ξ±] {δ₁ Ξ΄β‚‚ : ℝ}, δ₁ ≀ Ξ΄β‚‚ β†’ βˆ€ (E : Set Ξ±), Metric.thickening δ₁ E βŠ† Metric.cthickening Ξ΄β‚‚ E
Equiv.Perm.IsCycle.sameCycle
Mathlib.GroupTheory.Perm.Cycle.Basic
βˆ€ {Ξ± : Type u_2} {f : Equiv.Perm Ξ±} {x y : Ξ±}, f.IsCycle β†’ f x β‰  x β†’ f y β‰  y β†’ f.SameCycle x y
IsAdicComplete.StrictMono.liftRingHom._proof_4
Mathlib.RingTheory.AdicCompletion.RingHom
βˆ€ {a : β„• β†’ β„•}, StrictMono a β†’ βˆ€ {m : β„•}, a m ≀ a (m + 1)
MeasureTheory.SimpleFunc.instRing
Mathlib.MeasureTheory.Function.SimpleFunc
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ [inst : MeasurableSpace Ξ±] β†’ [Ring Ξ²] β†’ Ring (MeasureTheory.SimpleFunc Ξ± Ξ²)
Rep.FiniteCyclicGroup.moduleCatChainComplex._proof_1
Mathlib.RepresentationTheory.Homological.FiniteCyclic
βˆ€ {k G : Type u_1} [inst : CommRing k] [inst_1 : CommGroup G] [inst_2 : Fintype G] (A : Rep k G) (g : G), CategoryTheory.CategoryStruct.comp A.norm.hom (A.applyAsHom g - CategoryTheory.CategoryStruct.id A).hom = 0
_private.Mathlib.NumberTheory.JacobiSum.Basic.0.jacobiSum_trivial_trivial._simp_1_1
Mathlib.NumberTheory.JacobiSum.Basic
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {s t : Finset Ξ±} {a : Ξ±}, (a ∈ s \ t) = (a ∈ s ∧ a βˆ‰ t)
SymAlg.unsym_ne_zero_iff
Mathlib.Algebra.Symmetrized
βˆ€ {Ξ± : Type u_1} [inst : Zero Ξ±] (a : α˒ʸᡐ), SymAlg.unsym a β‰  0 ↔ a β‰  0
IsCoveringMap.monodromy
Mathlib.Topology.Homotopy.Lifting
{E : Type u_1} β†’ {X : Type u_2} β†’ [inst : TopologicalSpace E] β†’ [inst_1 : TopologicalSpace X] β†’ {p : E β†’ X} β†’ IsCoveringMap p β†’ {x y : X} β†’ Path.Homotopic.Quotient x y β†’ ↑(p ⁻¹' {x}) β†’ ↑(p ⁻¹' {y})
_private.Lean.Meta.Tactic.Simp.Main.0.Lean.Meta.Simp.mainCore.match_1
Lean.Meta.Tactic.Simp.Main
(motive : Lean.Meta.Simp.Result Γ— Lean.Meta.Simp.State β†’ Sort u_1) β†’ (__discr : Lean.Meta.Simp.Result Γ— Lean.Meta.Simp.State) β†’ ((r : Lean.Meta.Simp.Result) β†’ (s : Lean.Meta.Simp.State) β†’ motive (r, s)) β†’ motive __discr
_private.Lean.Server.Logging.0.Lean.Server.Logging.LogEntry.mk
Lean.Server.Logging
Std.Time.ZonedDateTime β†’ Lean.JsonRpc.MessageDirection β†’ Lean.JsonRpc.MessageKind β†’ Lean.JsonRpc.Message β†’ Lean.Server.Logging.LogEntry✝
LieModule.maxTrivLinearMapEquivLieModuleHom._proof_7
Mathlib.Algebra.Lie.Abelian
βˆ€ {R : Type u_3} {L : Type u_4} {M : Type u_1} {N : Type u_2} [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : LieAlgebra R L] [inst_3 : AddCommGroup M] [inst_4 : Module R M] [inst_5 : LieRingModule L M] [inst_6 : LieModule R L M] [inst_7 : AddCommGroup N] [inst_8 : Module R N] [inst_9 : LieRingModule L N] [inst_10 : LieModule R L N] (F : M →ₗ⁅R,L⁆ N), { toLinearMap := ↑F, map_lie' := β‹― } = F
BitVec.getMsbD_srem
Init.Data.BitVec.Bitblast
βˆ€ {w i : β„•} {x y : BitVec w}, (x.srem y).getMsbD i = match x.msb, y.msb with | false, false => (x % y).getMsbD i | false, true => (x % -y).getMsbD i | true, false => (-(-x % y)).getMsbD i | true, true => (-(-x % -y)).getMsbD i
LinearMap.proj_surjective
Mathlib.LinearAlgebra.Pi
βˆ€ {R : Type u} {ΞΉ : Type x} [inst : Semiring R] {Ο† : ΞΉ β†’ Type i} [inst_1 : (i : ΞΉ) β†’ AddCommMonoid (Ο† i)] [inst_2 : (i : ΞΉ) β†’ Module R (Ο† i)] (i : ΞΉ), Function.Surjective ⇑(LinearMap.proj i)
_private.Mathlib.Analysis.Meromorphic.NormalForm.0.MeromorphicOn.toMeromorphicNFOn_eq_self_on_nhdsNE._simp_1_2
Mathlib.Analysis.Meromorphic.NormalForm
βˆ€ {Ξ± : Type u} (s : Set Ξ±) (x : Ξ±), (x ∈ sᢜ) = (x βˆ‰ s)
FirstOrder.Language.ElementaryEmbedding.comp_apply
Mathlib.ModelTheory.ElementaryMaps
βˆ€ {L : FirstOrder.Language} {M : Type u_1} {N : Type u_2} {P : Type u_3} [inst : L.Structure M] [inst_1 : L.Structure N] [inst_2 : L.Structure P] (g : L.ElementaryEmbedding N P) (f : L.ElementaryEmbedding M N) (x : M), (g.comp f) x = g (f x)
sizeOf_default
Init.SizeOf
βˆ€ {Ξ± : Sort u_1} (n : Ξ±), sizeOf n = 0
_private.Mathlib.NumberTheory.ModularForms.CongruenceSubgroups.0.CongruenceSubgroup.exists_Gamma_le_conj._simp_1_6
Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
βˆ€ {n : Type u_2} [inst : DecidableEq n] [inst_1 : Fintype n] {R : Type v} [inst_2 : CommRing R] (M : Matrix n n β„€), (M.map fun x => ↑x).det = ↑M.det
_private.Mathlib.Order.Filter.Tendsto.0.Filter.Tendsto.if._simp_1_1
Mathlib.Order.Filter.Tendsto
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Ξ± β†’ Ξ²} {l₁ : Filter Ξ±} {lβ‚‚ : Filter Ξ²}, Filter.Tendsto f l₁ lβ‚‚ = βˆ€ s ∈ lβ‚‚, f ⁻¹' s ∈ l₁