name
stringlengths 2
347
| module
stringlengths 6
90
| type
stringlengths 1
5.42M
|
|---|---|---|
Lean.Lsp.instFromJsonResolveSupport
|
Lean.Data.Lsp.Basic
|
Lean.FromJson Lean.Lsp.ResolveSupport
|
Lean.Elab.Term.LValResolution.projIdx
|
Lean.Elab.App
|
Lean.Name β β β Lean.Elab.Term.LValResolution
|
pow_succ_pos._simp_1
|
Mathlib.Algebra.Order.GroupWithZero.Unbundled.Basic
|
β {Mβ : Type u_2} [inst : MonoidWithZero Mβ] [inst_1 : PartialOrder Mβ] {a : Mβ} [PosMulStrictMono Mβ],
0 < a β β (n : β), (0 < a ^ (n + 1)) = True
|
FirstOrder.Language.Substructure.map_strictMono_of_injective
|
Mathlib.ModelTheory.Substructures
|
β {L : FirstOrder.Language} {M : Type w} {N : Type u_1} [inst : L.Structure M] [inst_1 : L.Structure N] {f : L.Hom M N},
Function.Injective βf β StrictMono (FirstOrder.Language.Substructure.map f)
|
Std.Tactic.BVDecide.BVExpr.bin.injEq
|
Std.Tactic.BVDecide.Bitblast.BVExpr.Basic
|
β {w : β} (lhs : Std.Tactic.BVDecide.BVExpr w) (op : Std.Tactic.BVDecide.BVBinOp)
(rhs lhs_1 : Std.Tactic.BVDecide.BVExpr w) (op_1 : Std.Tactic.BVDecide.BVBinOp)
(rhs_1 : Std.Tactic.BVDecide.BVExpr w),
(lhs.bin op rhs = lhs_1.bin op_1 rhs_1) = (lhs = lhs_1 β§ op = op_1 β§ rhs = rhs_1)
|
sdiff_inf_right_comm
|
Mathlib.Order.BooleanAlgebra.Basic
|
β {Ξ± : Type u} [inst : GeneralizedBooleanAlgebra Ξ±] (x y z : Ξ±), x \ z β y = (x β y) \ z
|
ISize.toNatClampNeg_pos_iff
|
Init.Data.SInt.Lemmas
|
β (n : ISize), 0 < n.toNatClampNeg β 0 < n
|
Int.fmod_eq_fmod_iff_fmod_sub_eq_zero
|
Init.Data.Int.DivMod.Lemmas
|
β {m n k : β€}, m.fmod n = k.fmod n β (m - k).fmod n = 0
|
_private.Lean.Elab.PreDefinition.WF.PackMutual.0.Lean.Elab.WF.packCalls.match_1
|
Lean.Elab.PreDefinition.WF.PackMutual
|
(motive : Option β β Sort u_1) β
(x : Option β) β ((fidx : β) β motive (some fidx)) β ((x : Option β) β motive x) β motive x
|
CategoryTheory.ObjectProperty.IsTriangulated.rec
|
Mathlib.CategoryTheory.Triangulated.Subcategory
|
{C : Type u_1} β
[inst : CategoryTheory.Category.{v_1, u_1} C] β
[inst_1 : CategoryTheory.Limits.HasZeroObject C] β
[inst_2 : CategoryTheory.HasShift C β€] β
[inst_3 : CategoryTheory.Preadditive C] β
[inst_4 : β (n : β€), (CategoryTheory.shiftFunctor C n).Additive] β
[inst_5 : CategoryTheory.Pretriangulated C] β
{P : CategoryTheory.ObjectProperty C} β
{motive : P.IsTriangulated β Sort u} β
([toContainsZero : P.ContainsZero] β
[toIsStableUnderShift : P.IsStableUnderShift β€] β
[toIsTriangulatedClosedβ : P.IsTriangulatedClosedβ] β motive β―) β
(t : P.IsTriangulated) β motive t
|
Std.Tactic.BVDecide.BVLogicalExpr.eval_ite
|
Std.Tactic.BVDecide.Bitblast.BVExpr.Basic
|
β {assign : Std.Tactic.BVDecide.BVExpr.Assignment} {d l r : Std.Tactic.BVDecide.BoolExpr Std.Tactic.BVDecide.BVPred},
Std.Tactic.BVDecide.BVLogicalExpr.eval assign (d.ite l r) =
bif Std.Tactic.BVDecide.BVLogicalExpr.eval assign d then Std.Tactic.BVDecide.BVLogicalExpr.eval assign l
else Std.Tactic.BVDecide.BVLogicalExpr.eval assign r
|
TProd.instMeasurableSpace._sunfold
|
Mathlib.MeasureTheory.MeasurableSpace.Constructions
|
{Ξ΄ : Type u_4} β
(X : Ξ΄ β Type u_6) β [(i : Ξ΄) β MeasurableSpace (X i)] β (l : List Ξ΄) β MeasurableSpace (List.TProd X l)
|
Set.functorToTypes._proof_4
|
Mathlib.CategoryTheory.Types.Set
|
β {X : Type u_1} {X_1 Y Z : Set X} (f : X_1 βΆ Y) (g : Y βΆ Z),
(fun x =>
match x with
| β¨x, hxβ© => β¨x, β―β©) =
CategoryTheory.CategoryStruct.comp
(fun x =>
match x with
| β¨x, hxβ© => β¨x, β―β©)
fun x =>
match x with
| β¨x, hxβ© => β¨x, β―β©
|
FinBoolAlg._sizeOf_inst
|
Mathlib.Order.Category.FinBoolAlg
|
SizeOf FinBoolAlg
|
Mathlib.Tactic.Linarith.GlobalBranchingPreprocessor.recOn
|
Mathlib.Tactic.Linarith.Datatypes
|
{motive : Mathlib.Tactic.Linarith.GlobalBranchingPreprocessor β Sort u} β
(t : Mathlib.Tactic.Linarith.GlobalBranchingPreprocessor) β
((toPreprocessorBase : Mathlib.Tactic.Linarith.PreprocessorBase) β
(transform : Lean.MVarId β List Lean.Expr β Lean.MetaM (List Mathlib.Tactic.Linarith.Branch)) β
motive { toPreprocessorBase := toPreprocessorBase, transform := transform }) β
motive t
|
mdifferentiableWithinAt_congr_set'
|
Mathlib.Geometry.Manifold.MFDeriv.Basic
|
β {π : Type u_1} [inst : NontriviallyNormedField π] {E : Type u_2} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace π E] {H : Type u_3} [inst_3 : TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4}
[inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] {E' : Type u_5} [inst_6 : NormedAddCommGroup E']
[inst_7 : NormedSpace π E'] {H' : Type u_6} [inst_8 : TopologicalSpace H'] {I' : ModelWithCorners π E' H'}
{M' : Type u_7} [inst_9 : TopologicalSpace M'] [inst_10 : ChartedSpace H' M'] {f : M β M'} {x : M} {s t : Set M}
(y : M), s =αΆ [nhdsWithin x {y}αΆ] t β (MDifferentiableWithinAt I I' f s x β MDifferentiableWithinAt I I' f t x)
|
AlgebraicTopology.DoldKan.Ξβ.Obj.summand
|
Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
|
{C : Type u_1} β
[inst : CategoryTheory.Category.{v_1, u_1} C] β
[inst_1 : CategoryTheory.Preadditive C] β
ChainComplex C β β (Ξ : SimplexCategoryα΅α΅) β SimplicialObject.Splitting.IndexSet Ξ β C
|
Nimber.lt_one_iff_zero
|
Mathlib.SetTheory.Nimber.Basic
|
β {a : Nimber}, a < 1 β a = 0
|
MonoidAlgebra.liftNCRingHom._proof_3
|
Mathlib.Algebra.MonoidAlgebra.Lift
|
β {k : Type u_1} {G : Type u_2} {R : Type u_3} [inst : Semiring k] [inst_1 : Monoid G] [inst_2 : Semiring R]
(f : k β+* R) (g : G β* R),
(β (x : k) (y : G), Commute (f x) (g y)) β
β (_a _b : MonoidAlgebra k G),
(MonoidAlgebra.liftNC βf βg) (_a * _b) = (MonoidAlgebra.liftNC βf βg) _a * (MonoidAlgebra.liftNC βf βg) _b
|
FintypeCat.of.sizeOf_spec
|
Mathlib.CategoryTheory.FintypeCat
|
β (carrier : Type u_1) [str : Fintype carrier],
sizeOf { carrier := carrier, str := str } = 1 + sizeOf carrier + sizeOf str
|
Std.TreeSet.min?_le_of_contains
|
Std.Data.TreeSet.Lemmas
|
β {Ξ± : Type u} {cmp : Ξ± β Ξ± β Ordering} {t : Std.TreeSet Ξ± cmp} [inst : Std.TransCmp cmp] {k km : Ξ±}
(hc : t.contains k = true), t.min?.get β― = km β (cmp km k).isLE = true
|
OreLocalization.add_assoc
|
Mathlib.RingTheory.OreLocalization.Basic
|
β {R : Type u_1} [inst : Monoid R] {S : Submonoid R} [inst_1 : OreLocalization.OreSet S] {X : Type u_2}
[inst_2 : AddMonoid X] [inst_3 : DistribMulAction R X] (x y z : OreLocalization S X), x + y + z = x + (y + z)
|
Complex.exp_int_mul_two_pi_mul_I
|
Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
|
β (n : β€), Complex.exp (βn * (2 * βReal.pi * Complex.I)) = 1
|
_private.Std.Data.DTreeMap.Internal.Balancing.0.Std.DTreeMap.Internal.Impl.balanceR.match_1.eq_4
|
Std.Data.DTreeMap.Internal.Balancing
|
β {Ξ± : Type u_1} {Ξ² : Ξ± β Type u_2}
(motive :
(r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
r.Balanced β Std.DTreeMap.Internal.Impl.BalanceLPrecond r.size Std.DTreeMap.Internal.Impl.leaf.size β Sort u_3)
(size : β) (rk : Ξ±) (rv : Ξ² rk) (size_1 : β) (rlk : Ξ±) (rlv : Ξ² rlk) (l r : Std.DTreeMap.Internal.Impl Ξ± Ξ²)
(hrb :
(Std.DTreeMap.Internal.Impl.inner size rk rv (Std.DTreeMap.Internal.Impl.inner size_1 rlk rlv l r)
Std.DTreeMap.Internal.Impl.leaf).Balanced)
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond
(Std.DTreeMap.Internal.Impl.inner size rk rv (Std.DTreeMap.Internal.Impl.inner size_1 rlk rlv l r)
Std.DTreeMap.Internal.Impl.leaf).size
Std.DTreeMap.Internal.Impl.leaf.size)
(h_1 :
(hrb : Std.DTreeMap.Internal.Impl.leaf.Balanced) β
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond Std.DTreeMap.Internal.Impl.leaf.size
Std.DTreeMap.Internal.Impl.leaf.size) β
motive Std.DTreeMap.Internal.Impl.leaf hrb hlr)
(h_2 :
(size : β) β
(k : Ξ±) β
(v : Ξ² k) β
(hrb :
(Std.DTreeMap.Internal.Impl.inner size k v Std.DTreeMap.Internal.Impl.leaf
Std.DTreeMap.Internal.Impl.leaf).Balanced) β
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond
(Std.DTreeMap.Internal.Impl.inner size k v Std.DTreeMap.Internal.Impl.leaf
Std.DTreeMap.Internal.Impl.leaf).size
Std.DTreeMap.Internal.Impl.leaf.size) β
motive
(Std.DTreeMap.Internal.Impl.inner size k v Std.DTreeMap.Internal.Impl.leaf
Std.DTreeMap.Internal.Impl.leaf)
hrb hlr)
(h_3 :
(size : β) β
(rk : Ξ±) β
(rv : Ξ² rk) β
(rr : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
(size_2 : β) β
(k : Ξ±) β
(v : Ξ² k) β
(l r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
rr = Std.DTreeMap.Internal.Impl.inner size_2 k v l r β
(hrb :
(Std.DTreeMap.Internal.Impl.inner size rk rv Std.DTreeMap.Internal.Impl.leaf
(Std.DTreeMap.Internal.Impl.inner size_2 k v l r)).Balanced) β
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond
(Std.DTreeMap.Internal.Impl.inner size rk rv Std.DTreeMap.Internal.Impl.leaf
(Std.DTreeMap.Internal.Impl.inner size_2 k v l r)).size
Std.DTreeMap.Internal.Impl.leaf.size) β
motive
(Std.DTreeMap.Internal.Impl.inner size rk rv Std.DTreeMap.Internal.Impl.leaf
(Std.DTreeMap.Internal.Impl.inner size_2 k v l r))
hrb hlr)
(h_4 :
(size : β) β
(rk : Ξ±) β
(rv : Ξ² rk) β
(size_2 : β) β
(rlk : Ξ±) β
(rlv : Ξ² rlk) β
(l r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
(hrb :
(Std.DTreeMap.Internal.Impl.inner size rk rv (Std.DTreeMap.Internal.Impl.inner size_2 rlk rlv l r)
Std.DTreeMap.Internal.Impl.leaf).Balanced) β
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond
(Std.DTreeMap.Internal.Impl.inner size rk rv
(Std.DTreeMap.Internal.Impl.inner size_2 rlk rlv l r)
Std.DTreeMap.Internal.Impl.leaf).size
Std.DTreeMap.Internal.Impl.leaf.size) β
motive
(Std.DTreeMap.Internal.Impl.inner size rk rv
(Std.DTreeMap.Internal.Impl.inner size_2 rlk rlv l r) Std.DTreeMap.Internal.Impl.leaf)
hrb hlr)
(h_5 :
(rs : β) β
(rk : Ξ±) β
(rv : Ξ² rk) β
(rls : β) β
(rlk : Ξ±) β
(rlv : Ξ² rlk) β
(rll rlr : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
(rrs : β) β
(k : Ξ±) β
(v : Ξ² k) β
(l r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
(hrb :
(Std.DTreeMap.Internal.Impl.inner rs rk rv
(Std.DTreeMap.Internal.Impl.inner rls rlk rlv rll rlr)
(Std.DTreeMap.Internal.Impl.inner rrs k v l r)).Balanced) β
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond
(Std.DTreeMap.Internal.Impl.inner rs rk rv
(Std.DTreeMap.Internal.Impl.inner rls rlk rlv rll rlr)
(Std.DTreeMap.Internal.Impl.inner rrs k v l r)).size
Std.DTreeMap.Internal.Impl.leaf.size) β
motive
(Std.DTreeMap.Internal.Impl.inner rs rk rv
(Std.DTreeMap.Internal.Impl.inner rls rlk rlv rll rlr)
(Std.DTreeMap.Internal.Impl.inner rrs k v l r))
hrb hlr),
(match
Std.DTreeMap.Internal.Impl.inner size rk rv (Std.DTreeMap.Internal.Impl.inner size_1 rlk rlv l r)
Std.DTreeMap.Internal.Impl.leaf,
hrb, hlr with
| Std.DTreeMap.Internal.Impl.leaf, hrb, hlr => h_1 hrb hlr
| Std.DTreeMap.Internal.Impl.inner size k v Std.DTreeMap.Internal.Impl.leaf Std.DTreeMap.Internal.Impl.leaf, hrb,
hlr => h_2 size k v hrb hlr
|
Std.DTreeMap.Internal.Impl.inner size rk rv Std.DTreeMap.Internal.Impl.leaf
rr@h:(Std.DTreeMap.Internal.Impl.inner size_2 k v l r),
hrb, hlr => h_3 size rk rv rr size_2 k v l r h hrb hlr
|
Std.DTreeMap.Internal.Impl.inner size rk rv (Std.DTreeMap.Internal.Impl.inner size_2 rlk rlv l r)
Std.DTreeMap.Internal.Impl.leaf,
hrb, hlr => h_4 size rk rv size_2 rlk rlv l r hrb hlr
|
Std.DTreeMap.Internal.Impl.inner rs rk rv (Std.DTreeMap.Internal.Impl.inner rls rlk rlv rll rlr)
(Std.DTreeMap.Internal.Impl.inner rrs k v l r),
hrb, hlr => h_5 rs rk rv rls rlk rlv rll rlr rrs k v l r hrb hlr) =
h_4 size rk rv size_1 rlk rlv l r hrb hlr
|
_private.Mathlib.Data.Int.CardIntervalMod.0.Nat.Ico_filter_modEq_cast._simp_1_3
|
Mathlib.Data.Int.CardIntervalMod
|
β {Ξ± : Type u_1} [inst : Preorder Ξ±] [inst_1 : LocallyFiniteOrder Ξ±] {a b x : Ξ±}, (x β Finset.Ico a b) = (a β€ x β§ x < b)
|
_private.Mathlib.CategoryTheory.ComposableArrows.Basic.0.CategoryTheory.ComposableArrows.homMkβ_app_three._proof_1
|
Mathlib.CategoryTheory.ComposableArrows.Basic
|
Β¬3 < 4 + 1 β False
|
_private.Lean.Elab.Extra.0.Lean.Elab.Term.elabForIn.match_1
|
Lean.Elab.Extra
|
(motive : Lean.LOption Lean.Expr β Sort u_1) β
(__do_lift : Lean.LOption Lean.Expr) β
((inst : Lean.Expr) β motive (Lean.LOption.some inst)) β
(Unit β motive Lean.LOption.undef) β (Unit β motive Lean.LOption.none) β motive __do_lift
|
_private.Lean.PrettyPrinter.Formatter.0.Lean.PrettyPrinter.Formatter.withMaybeTag.match_4
|
Lean.PrettyPrinter.Formatter
|
(motive : Option String.Pos.Raw β Sort u_1) β
(pos? : Option String.Pos.Raw) β
((p : String.Pos.Raw) β motive (some p)) β ((x : Option String.Pos.Raw) β motive x) β motive pos?
|
_private.Mathlib.Geometry.Manifold.VectorField.Pullback.0.VectorField.mpullback_zero._simp_1_1
|
Mathlib.Geometry.Manifold.VectorField.Pullback
|
β {π : Type u_1} [inst : NontriviallyNormedField π] {H : Type u_2} [inst_1 : TopologicalSpace H] {E : Type u_3}
[inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace π E] {I : ModelWithCorners π E H} {M : Type u_4}
[inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] {H' : Type u_5} [inst_6 : TopologicalSpace H']
{E' : Type u_6} [inst_7 : NormedAddCommGroup E'] [inst_8 : NormedSpace π E'] {I' : ModelWithCorners π E' H'}
{M' : Type u_7} [inst_9 : TopologicalSpace M'] [inst_10 : ChartedSpace H' M'] {f : M β M'}
{V : (x : M') β TangentSpace I' x}, VectorField.mpullback I I' f V = VectorField.mpullbackWithin I I' f V Set.univ
|
CategoryTheory.Functor.mapSquare._proof_6
|
Mathlib.CategoryTheory.Square
|
β {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {D : Type u_4}
[inst_1 : CategoryTheory.Category.{u_3, u_4} D] (F : CategoryTheory.Functor C D) (X : CategoryTheory.Square C),
{ Οβ := F.map (CategoryTheory.CategoryStruct.id X).Οβ, Οβ := F.map (CategoryTheory.CategoryStruct.id X).Οβ,
Οβ := F.map (CategoryTheory.CategoryStruct.id X).Οβ, Οβ := F.map (CategoryTheory.CategoryStruct.id X).Οβ,
commββ := β―, commββ := β―, commββ := β―, commββ := β― } =
CategoryTheory.CategoryStruct.id (X.map F)
|
PartOrdEmb.hasForgetToPartOrd._proof_4
|
Mathlib.Order.Category.PartOrdEmb
|
{ obj := fun X => { carrier := βX, str := X.str }, map := fun {X Y} f => PartOrd.ofHom β(PartOrdEmb.Hom.hom f),
map_id := PartOrdEmb.hasForgetToPartOrd._proof_1, map_comp := @PartOrdEmb.hasForgetToPartOrd._proof_2 }.comp
(CategoryTheory.forget PartOrd) =
{ obj := fun X => { carrier := βX, str := X.str }, map := fun {X Y} f => PartOrd.ofHom β(PartOrdEmb.Hom.hom f),
map_id := PartOrdEmb.hasForgetToPartOrd._proof_1, map_comp := @PartOrdEmb.hasForgetToPartOrd._proof_2 }.comp
(CategoryTheory.forget PartOrd)
|
Filter.ker_surjective
|
Mathlib.Order.Filter.Ker
|
β {Ξ± : Type u_2}, Function.Surjective Filter.ker
|
MeasureTheory.Lp.smul_neg
|
Mathlib.MeasureTheory.Function.Holder
|
β {Ξ± : Type u_1} {π : Type u_3} {E : Type u_4} {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} {p q r : ENNReal}
[hpqr : p.HolderTriple q r] [inst : NormedRing π] [inst_1 : NormedAddCommGroup E] [inst_2 : Module π E]
[inst_3 : IsBoundedSMul π E] (f : β₯(MeasureTheory.Lp π p ΞΌ)) (g : β₯(MeasureTheory.Lp E q ΞΌ)), f β’ -g = -(f β’ g)
|
Lean.Lsp.SymbolTag.deprecated
|
Lean.Data.Lsp.LanguageFeatures
|
Lean.Lsp.SymbolTag
|
Con.subgroup_quotientGroupCon
|
Mathlib.GroupTheory.QuotientGroup.Defs
|
β {G : Type u_1} [inst : Group G] (H : Subgroup G) [inst_1 : H.Normal], (QuotientGroup.con H).subgroup = H
|
WeierstrassCurve.map_preΞ¨β
|
Mathlib.AlgebraicGeometry.EllipticCurve.DivisionPolynomial.Basic
|
β {R : Type r} {S : Type s} [inst : CommRing R] [inst_1 : CommRing S] (W : WeierstrassCurve R) (f : R β+* S),
(W.map f).preΞ¨β = Polynomial.map f W.preΞ¨β
|
nsmulBinRec.go_spec
|
Mathlib.Algebra.Group.Defs
|
β {M : Type u_2} [inst : AddSemigroup M] [inst_1 : Zero M] (k : β) (m n : M),
nsmulBinRec.go (k + 1) m n = m + nsmulRec' (k + 1) n
|
Plausible.Configuration.quiet
|
Plausible.Testable
|
Plausible.Configuration β Bool
|
FixedPoints.instAlgebraSubtypeMemSubfieldSubfield
|
Mathlib.FieldTheory.Fixed
|
(M : Type u) β
[inst : Monoid M] β
(F : Type v) β [inst_1 : Field F] β [inst_2 : MulSemiringAction M F] β Algebra (β₯(FixedPoints.subfield M F)) F
|
Std.Internal.List.getValueD_filter_not_contains_of_contains_right
|
Std.Data.Internal.List.Associative
|
β {Ξ± : Type u} {Ξ² : Type v} [inst : BEq Ξ±] [EquivBEq Ξ±] {lβ : List ((_ : Ξ±) Γ Ξ²)} {lβ : List Ξ±} {k : Ξ±} {fallback : Ξ²},
Std.Internal.List.DistinctKeys lβ β
lβ.contains k = true β
Std.Internal.List.getValueD k (List.filter (fun p => !lβ.contains p.fst) lβ) fallback = fallback
|
Units.map._proof_4
|
Mathlib.Algebra.Group.Units.Hom
|
β {M : Type u_2} {N : Type u_1} [inst : Monoid M] [inst_1 : Monoid N] (f : M β* N) (x y : MΛ£),
f (x * y).inv * f β(x * y) = 1
|
CategoryTheory.Equivalence.unitIso_hom_app_comp_inverse_map_Ξ·_functor_assoc
|
Mathlib.CategoryTheory.Monoidal.Functor
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] [inst_1 : CategoryTheory.MonoidalCategory C] {D : Type uβ}
[inst_2 : CategoryTheory.Category.{vβ, uβ} D] [inst_3 : CategoryTheory.MonoidalCategory D] (e : C β D)
[inst_4 : e.functor.Monoidal] [inst_5 : e.inverse.Monoidal] [e.IsMonoidal] {Z : C}
(h : e.inverse.obj (CategoryTheory.MonoidalCategoryStruct.tensorUnit D) βΆ Z),
CategoryTheory.CategoryStruct.comp (e.unitIso.hom.app (CategoryTheory.MonoidalCategoryStruct.tensorUnit C))
(CategoryTheory.CategoryStruct.comp (e.inverse.map (CategoryTheory.Functor.OplaxMonoidal.Ξ· e.functor)) h) =
CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.LaxMonoidal.Ξ΅ e.inverse) h
|
Lean.Meta.Grind.Arith.Cutsat.UnsatProof.ctorElimType
|
Lean.Meta.Tactic.Grind.Arith.Cutsat.Types
|
{motive_12 : Lean.Meta.Grind.Arith.Cutsat.UnsatProof β Sort u} β β β Sort (max 1 u)
|
Std.DHashMap.getD_eq_fallback
|
Std.Data.DHashMap.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {m : Std.DHashMap Ξ± Ξ²} [inst : LawfulBEq Ξ±] {a : Ξ±}
{fallback : Ξ² a}, a β m β m.getD a fallback = fallback
|
AlgebraicGeometry.PresheafedSpace.isIso_of_components
|
Mathlib.Geometry.RingedSpace.PresheafedSpace
|
β {C : Type u_1} [inst : CategoryTheory.Category.{v_1, u_1} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y)
[CategoryTheory.IsIso f.base] [CategoryTheory.IsIso f.c], CategoryTheory.IsIso f
|
Lean.Meta.Grind.SavedState
|
Lean.Meta.Tactic.Grind.Types
|
Type
|
WithLp.toLp_zero
|
Mathlib.Analysis.Normed.Lp.WithLp
|
β (p : ENNReal) {V : Type u_4} [inst : AddCommGroup V], WithLp.toLp p 0 = 0
|
HasCompactMulSupport.sup
|
Mathlib.Topology.Algebra.Order.Support
|
β {X : Type u_1} {M : Type u_2} [inst : TopologicalSpace X] [inst_1 : One M] [inst_2 : SemilatticeSup M] {f g : X β M},
HasCompactMulSupport f β HasCompactMulSupport g β HasCompactMulSupport (f β g)
|
IsLUB.exists_between_sub_self'
|
Mathlib.Algebra.Order.Group.Bounds
|
β {Ξ± : Type u_1} [inst : AddCommGroup Ξ±] [inst_1 : LinearOrder Ξ±] [IsOrderedAddMonoid Ξ±] {s : Set Ξ±} {a Ξ΅ : Ξ±},
IsLUB s a β a β s β 0 < Ξ΅ β β b β s, a - Ξ΅ < b β§ b < a
|
Mathlib.Tactic.Ring.neg_one_mul
|
Mathlib.Tactic.Ring.Basic
|
β {R : Type u_2} [inst : CommRing R] {a b : R}, (Int.negOfNat 1).rawCast * a = b β -a = b
|
_private.Lean.Elab.DocString.0.Lean.Doc.initFn._@.Lean.Elab.DocString.2101956971._hygCtx._hyg.2
|
Lean.Elab.DocString
|
IO Unit
|
Std.Iterators.IterM.DefaultConsumers.forIn'_eq_forIn'
|
Init.Data.Iterators.Lemmas.Consumers.Monadic.Loop
|
β {m : Type w β Type w'} {Ξ± Ξ² : Type w} [inst : Std.Iterators.Iterator Ξ± m Ξ²] {n : Type x β Type x'} [inst_1 : Monad n]
[LawfulMonad n] {lift : (Ξ³ : Type w) β (Ξ΄ : Type x) β (Ξ³ β n Ξ΄) β m Ξ³ β n Ξ΄} {Ξ³ : Type x} {it : Std.IterM m Ξ²}
{init : Ξ³} {P : Ξ² β Prop} {hP : β (b : Ξ²), it.IsPlausibleIndirectOutput b β P b} {Q : Ξ² β Prop}
{hQ : β (b : Ξ²), it.IsPlausibleIndirectOutput b β Q b} (Pl : Ξ² β Ξ³ β ForInStep Ξ³ β Prop)
{f : (b : Ξ²) β P b β (c : Ξ³) β n (Subtype (Pl b c))} {g : (b : Ξ²) β Q b β (c : Ξ³) β n (Subtype (Pl b c))},
Std.Iterators.IteratorLoop.WellFounded Ξ± m Pl β
(β (b : Ξ²) (c : Ξ³) (hPb : P b) (hQb : Q b), f b hPb c = g b hQb c) β
Std.Iterators.IterM.DefaultConsumers.forIn' lift Ξ³ Pl it init P hP f =
Std.Iterators.IterM.DefaultConsumers.forIn' lift Ξ³ Pl it init Q hQ g
|
fderiv_tsum_apply
|
Mathlib.Analysis.Calculus.SmoothSeries
|
β {Ξ± : Type u_1} {π : Type u_3} {E : Type u_4} {F : Type u_5} [inst : NontriviallyNormedField π] [IsRCLikeNormedField π]
[inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace π E] [inst_4 : NormedAddCommGroup F] [CompleteSpace F]
{u : Ξ± β β} [inst_6 : NormedSpace π F] {f : Ξ± β E β F} {xβ : E},
Summable u β
(β (n : Ξ±), Differentiable π (f n)) β
(β (n : Ξ±) (x : E), βfderiv π (f n) xβ β€ u n) β
(Summable fun n => f n xβ) β β (x : E), fderiv π (fun y => β' (n : Ξ±), f n y) x = β' (n : Ξ±), fderiv π (f n) x
|
_private.Init.Data.Array.Find.0.Array.idxOf?.eq_1
|
Init.Data.Array.Find
|
β {Ξ± : Type u} [inst : BEq Ξ±] (xs : Array Ξ±) (v : Ξ±), xs.idxOf? v = Option.map (fun x => βx) (xs.finIdxOf? v)
|
DirectSum.decompose_of_mem_same
|
Mathlib.Algebra.DirectSum.Decomposition
|
β {ΞΉ : Type u_1} {M : Type u_3} {Ο : Type u_4} [inst : DecidableEq ΞΉ] [inst_1 : AddCommMonoid M] [inst_2 : SetLike Ο M]
[inst_3 : AddSubmonoidClass Ο M] (β³ : ΞΉ β Ο) [inst_4 : DirectSum.Decomposition β³] {x : M} {i : ΞΉ},
x β β³ i β β(((DirectSum.decompose β³) x) i) = x
|
CategoryTheory.Functor.Faithful.of_comp_eq
|
Mathlib.CategoryTheory.Functor.FullyFaithful
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [inst_1 : CategoryTheory.Category.{vβ, uβ} D]
{E : Type uβ} [inst_2 : CategoryTheory.Category.{vβ, uβ} E] {F : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor D E} {H : CategoryTheory.Functor C E} [β : H.Faithful], F.comp G = H β F.Faithful
|
Lean.indentExpr
|
Lean.Message
|
Lean.Expr β Lean.MessageData
|
CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence._proof_1
|
Mathlib.CategoryTheory.Comma.Over.Basic
|
β {T : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} T] {D : Type u_4}
[inst_1 : CategoryTheory.Category.{u_3, u_4} D] (F : CategoryTheory.Functor T D) (Y : D) (X : T)
(a a_1 : CategoryTheory.CostructuredArrow (CategoryTheory.CostructuredArrow.proj F Y) X) (a_2 : a βΆ a_1),
CategoryTheory.CategoryStruct.comp a_2 (CategoryTheory.CategoryStruct.id a_1) =
CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id a)
((CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse F Y X).map
((CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor F Y X).map a_2))
|
CompHausLike.instHasPropSigma
|
Mathlib.Topology.Category.CompHausLike.SigmaComparison
|
β {P : TopCat β Prop} [CompHausLike.HasExplicitFiniteCoproducts P] {Ξ± : Type u} [Finite Ξ±] (Ο : Ξ± β Type u)
[inst : (a : Ξ±) β TopologicalSpace (Ο a)] [β (a : Ξ±), CompactSpace (Ο a)] [β (a : Ξ±), T2Space (Ο a)]
[β (a : Ξ±), CompHausLike.HasProp P (Ο a)], CompHausLike.HasProp P ((a : Ξ±) Γ Ο a)
|
CategoryTheory.Limits.IsColimit.mono_ΞΉ_app_of_isFiltered
|
Mathlib.CategoryTheory.Abelian.GrothendieckAxioms.Colim
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {J : Type u'} [inst_1 : CategoryTheory.Category.{v', u'} J]
{X : CategoryTheory.Functor J C} [β (j j' : J) (Ο : j βΆ j'), CategoryTheory.Mono (X.map Ο)]
{c : CategoryTheory.Limits.Cocone X} (hc : CategoryTheory.Limits.IsColimit c) [CategoryTheory.IsFiltered J] (jβ : J)
[inst_4 : CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.Under jβ) C]
[CategoryTheory.Limits.colim.PreservesMonomorphisms], CategoryTheory.Mono (c.ΞΉ.app jβ)
|
GaloisInsertion.recOn
|
Mathlib.Order.GaloisConnection.Defs
|
{Ξ± : Type u_2} β
{Ξ² : Type u_3} β
[inst : Preorder Ξ±] β
[inst_1 : Preorder Ξ²] β
{l : Ξ± β Ξ²} β
{u : Ξ² β Ξ±} β
{motive : GaloisInsertion l u β Sort u} β
(t : GaloisInsertion l u) β
((choice : (x : Ξ±) β u (l x) β€ x β Ξ²) β
(gc : GaloisConnection l u) β
(le_l_u : β (x : Ξ²), x β€ l (u x)) β
(choice_eq : β (a : Ξ±) (h : u (l a) β€ a), choice a h = l a) β
motive { choice := choice, gc := gc, le_l_u := le_l_u, choice_eq := choice_eq }) β
motive t
|
_private.Lean.ErrorExplanation.0.Lean.ErrorExplanation.parseExplanation.match_5
|
Lean.ErrorExplanation
|
(motive : β Γ String.Slice β Sort u_1) β
(__discr : β Γ String.Slice) β ((fst : β) β (closing : String.Slice) β motive (fst, closing)) β motive __discr
|
CochainComplex.mkAux._proof_2
|
Mathlib.Algebra.Homology.HomologicalComplex
|
β {V : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} V] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms V]
(Xβ Xβ Xβ : V) (dβ : Xβ βΆ Xβ) (dβ : Xβ βΆ Xβ) (s : CategoryTheory.CategoryStruct.comp dβ dβ = 0)
(succ :
(S : CategoryTheory.ShortComplex V) β (Xβ : V) Γ' (dβ : S.Xβ βΆ Xβ) Γ' CategoryTheory.CategoryStruct.comp S.g dβ = 0)
(n : β),
CategoryTheory.CategoryStruct.comp (CochainComplex.mkAux Xβ Xβ Xβ dβ dβ s succ n).g
(succ (CochainComplex.mkAux Xβ Xβ Xβ dβ dβ s succ n)).snd.fst =
0
|
_private.Mathlib.MeasureTheory.Function.AEMeasurableSequence.0.aeSeq.measure_compl_aeSeqSet_eq_zero._simp_1_3
|
Mathlib.MeasureTheory.Function.AEMeasurableSequence
|
β {Ξ± : Type u_1} {F : Type u_3} [inst : FunLike F (Set Ξ±) ENNReal] [inst_1 : MeasureTheory.OuterMeasureClass F Ξ±]
{ΞΌ : F} {ΞΉ : Sort u_4} [Countable ΞΉ] {p : Ξ± β ΞΉ β Prop},
(β (i : ΞΉ), βα΅ (a : Ξ±) βΞΌ, p a i) = βα΅ (a : Ξ±) βΞΌ, β (i : ΞΉ), p a i
|
PseudoEmetricSpace.ofRiemannianMetric._proof_3
|
Mathlib.Geometry.Manifold.Riemannian.Basic
|
β {E : Type u_2} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace β E] {H : Type u_3} [inst_2 : TopologicalSpace H]
(I : ModelWithCorners β E H) (M : Type u_1) [inst_3 : TopologicalSpace M] [inst_4 : ChartedSpace H M]
[inst_5 : IsManifold I 1 M], VectorBundle β E (TangentSpace I)
|
MeasureTheory.NullMeasurableSet.diff._simp_1
|
Mathlib.MeasureTheory.Measure.NullMeasurable
|
β {Ξ± : Type u_2} {m0 : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} {s t : Set Ξ±},
MeasureTheory.NullMeasurableSet s ΞΌ β
MeasureTheory.NullMeasurableSet t ΞΌ β MeasureTheory.NullMeasurableSet (s \ t) ΞΌ = True
|
ProbabilityTheory.condIndepFun_self_right
|
Mathlib.Probability.Independence.Conditional
|
β {Ξ© : Type u_1} {Ξ² : Type u_3} {Ξ²' : Type u_4} {mΞ© : MeasurableSpace Ξ©} [inst : StandardBorelSpace Ξ©]
{ΞΌ : MeasureTheory.Measure Ξ©} [inst_1 : MeasureTheory.IsFiniteMeasure ΞΌ] {mΞ² : MeasurableSpace Ξ²}
{mΞ²' : MeasurableSpace Ξ²'} {X : Ξ© β Ξ²} {Z : Ξ© β Ξ²'},
Measurable X β β (hZ : Measurable Z), ProbabilityTheory.CondIndepFun (MeasurableSpace.comap Z inferInstance) β― X Z ΞΌ
|
Int.add_one_tdiv_of_pos
|
Init.Data.Int.DivMod.Lemmas
|
β {a b : β€}, 0 < b β (a + 1).tdiv b = a.tdiv b + if 0 < a + 1 β§ b β£ a + 1 β¨ a < 0 β§ b β£ a then 1 else 0
|
Qq.Impl.stripDollars
|
Qq.Macro
|
Lean.Name β Lean.Name
|
AlgEquiv.aut._proof_10
|
Mathlib.Algebra.Algebra.Equiv
|
β {R : Type u_1} {Aβ : Type u_2} [inst : CommSemiring R] [inst_1 : Semiring Aβ] [inst_2 : Algebra R Aβ]
(Ο : Aβ ββ[R] Aβ), Ο.symm * Ο = 1
|
_private.Init.Data.List.Find.0.List.findIdx_lt_length_of_exists._simp_1_2
|
Init.Data.List.Find
|
β {a b c : Prop}, (a β§ b β c) = (a β b β c)
|
CategoryTheory.Enriched.FunctorCategory.homEquiv._proof_7
|
Mathlib.CategoryTheory.Enriched.FunctorCategory
|
β (V : Type u_6) [inst : CategoryTheory.Category.{u_5, u_6} V] [inst_1 : CategoryTheory.MonoidalCategory V]
{C : Type u_3} [inst_2 : CategoryTheory.Category.{u_2, u_3} C] {J : Type u_1}
[inst_3 : CategoryTheory.Category.{u_4, u_1} J] [inst_4 : CategoryTheory.EnrichedOrdinaryCategory V C]
{Fβ Fβ : CategoryTheory.Functor J C} [inst_5 : CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V Fβ Fβ]
(Ο : Fβ βΆ Fβ),
{
app := fun j =>
(CategoryTheory.eHomEquiv V).symm
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.end_.lift (fun j => (CategoryTheory.eHomEquiv V) (Ο.app j)) β―)
(CategoryTheory.Limits.end_.Ο (CategoryTheory.Enriched.FunctorCategory.diagram V Fβ Fβ) j)),
naturality := β― } =
Ο
|
SummationFilter.tprod_symmetricIcc_eq_tprod_symmetricIco
|
Mathlib.Topology.Algebra.InfiniteSum.ConditionalInt
|
β {Ξ± : Type u_1} {f : β€ β Ξ±} [inst : CommGroup Ξ±] [inst_1 : TopologicalSpace Ξ±] [ContinuousMul Ξ±] [T2Space Ξ±],
Multipliable f (SummationFilter.symmetricIcc β€) β
Filter.Tendsto (fun N => (f βN)β»ΒΉ) Filter.atTop (nhds 1) β
β'[SummationFilter.symmetricIco β€] (b : β€), f b = β'[SummationFilter.symmetricIcc β€] (b : β€), f b
|
Std.DTreeMap.Internal.Impl.minKeyD_insert_le_self
|
Std.Data.DTreeMap.Internal.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {instOrd : Ord Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} [Std.TransOrd Ξ±] (h : t.WF)
{k : Ξ±} {v : Ξ² k} {fallback : Ξ±},
(compare ((Std.DTreeMap.Internal.Impl.insert k v t β―).impl.minKeyD fallback) k).isLE = true
|
eventually_le_nhds
|
Mathlib.Topology.Order.OrderClosed
|
β {Ξ± : Type u} [inst : TopologicalSpace Ξ±] [inst_1 : LinearOrder Ξ±] [ClosedIciTopology Ξ±] {a b : Ξ±},
a < b β βαΆ (x : Ξ±) in nhds a, x β€ b
|
IsArtinianRing.quotNilradicalEquivPi._proof_1
|
Mathlib.RingTheory.Artinian.Module
|
β (R : Type u_1) [inst : CommRing R] [IsArtinianRing R] (x : R), x β nilradical R β x β β¨
i, i.asIdeal
|
BoundedGENhdsClass.mk
|
Mathlib.Topology.Order.LiminfLimsup
|
β {Ξ± : Type u_7} [inst : Preorder Ξ±] [inst_1 : TopologicalSpace Ξ±],
(β (a : Ξ±), Filter.IsBounded (fun x1 x2 => x1 β₯ x2) (nhds a)) β BoundedGENhdsClass Ξ±
|
AlgebraicGeometry.Scheme.instOverXPullbackCoverOverProp'
|
Mathlib.AlgebraicGeometry.Cover.Over
|
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} β
(S : AlgebraicGeometry.Scheme) β
[inst : P.IsStableUnderBaseChange] β
[inst_1 : AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] β
{X W : AlgebraicGeometry.Scheme} β
(π° : AlgebraicGeometry.Scheme.Cover (AlgebraicGeometry.Scheme.precoverage P) X) β
(f : W βΆ X) β
[inst_2 : W.Over S] β
[inst_3 : X.Over S] β
[inst_4 : AlgebraicGeometry.Scheme.Cover.Over S π°] β
[inst_5 : AlgebraicGeometry.Scheme.Hom.IsOver f S] β
{Q : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} β
[inst_6 : Q.HasOfPostcompProperty Q] β
[inst_7 : Q.IsStableUnderBaseChange] β
[inst_8 : Q.IsStableUnderComposition] β
(hX : Q (X β S)) β
(hW : Q (W β S)) β
(hQ : β (j : π°.Iβ), Q (π°.X j β S)) β
(j : π°.Iβ) β
((AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp' S π° f hX hW hQ).X j).Over
S
|
_private.Mathlib.Order.WithBot.0.WithBot.le_of_forall_lt_iff_le._simp_1_1
|
Mathlib.Order.WithBot
|
β {Ξ± : Type u_3} {inst : LT Ξ±} [self : NoMinOrder Ξ±] (a : Ξ±), (β b, b < a) = True
|
sdiff_sdiff_sdiff_cancel_right
|
Mathlib.Order.BooleanAlgebra.Basic
|
β {Ξ± : Type u} {x y z : Ξ±} [inst : GeneralizedBooleanAlgebra Ξ±], z β€ y β (x \ z) \ (y \ z) = x \ y
|
Lean.Meta.Grind.Arith.Linear.ProofM.State.mk._flat_ctor
|
Lean.Meta.Tactic.Grind.Arith.Linear.Proof
|
Std.HashMap UInt64 Lean.Expr β
Std.HashMap Lean.Grind.Linarith.Var Lean.Expr β
Std.HashMap Lean.Grind.Linarith.Poly Lean.Expr β
Std.HashMap Lean.Meta.Grind.Arith.Linear.LinExpr Lean.Expr β
Std.HashMap Lean.Grind.CommRing.Poly Lean.Expr β
Std.HashMap Lean.Meta.Grind.Arith.CommRing.RingExpr Lean.Expr β
Std.HashMap Lean.Grind.Linarith.Var Lean.Expr β Lean.Meta.Grind.Arith.Linear.ProofM.State
|
trdeg_add_eq
|
Mathlib.RingTheory.AlgebraicIndependent.TranscendenceBasis
|
β (R : Type u_1) (S : Type v) [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : Algebra R S] [Nontrivial R]
{A : Type v} [inst_4 : CommRing A] [NoZeroDivisors A] [inst_6 : Algebra R A] [inst_7 : Algebra S A] [FaithfulSMul R S]
[FaithfulSMul S A] [IsScalarTower R S A], Algebra.trdeg R S + Algebra.trdeg S A = Algebra.trdeg R A
|
Std.Internal.List.containsKey_filter_not_contains_iff
|
Std.Data.Internal.List.Associative
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} [inst : BEq Ξ±] [EquivBEq Ξ±] {lβ : List ((a : Ξ±) Γ Ξ² a)} {lβ : List Ξ±}
{hlβ : Std.Internal.List.DistinctKeys lβ} {k : Ξ±},
Std.Internal.List.containsKey k (List.filter (fun p => !lβ.contains p.fst) lβ) = true β
Std.Internal.List.containsKey k lβ = true β§ Β¬lβ.contains k = true
|
Lean.Core.CoreM.asTask'
|
Lean.Elab.Task
|
{Ξ± : Type} β Lean.CoreM Ξ± β Lean.CoreM (Task (Lean.CoreM Ξ±))
|
Std.Time.Format.parse
|
Std.Time.Format.Basic
|
{f : Type} β
{typ : Type β f β Type} β
[self : Std.Time.Format f typ] β {Ξ± : Type} β (fmt : f) β typ (Option Ξ±) fmt β String β Except String Ξ±
|
_private.Mathlib.Data.Fin.Tuple.Basic.0.Fin.sigma_eq_iff_eq_comp_cast.match_1_1
|
Mathlib.Data.Fin.Tuple.Basic
|
β {Ξ± : Type u_1} {a b : (ii : β) Γ (Fin ii β Ξ±)} (motive : (β (h : a.fst = b.fst), a.snd = b.snd β Fin.cast h) β Prop)
(x : β (h : a.fst = b.fst), a.snd = b.snd β Fin.cast h),
(β (w : a.fst = b.fst) (h' : a.snd = b.snd β Fin.cast w), motive β―) β motive x
|
Lean.Meta.mkImpCongr
|
Lean.Meta.AppBuilder
|
Lean.Expr β Lean.Expr β Lean.MetaM Lean.Expr
|
Polynomial.instNatCast
|
Mathlib.Algebra.Polynomial.Basic
|
{R : Type u} β [inst : Semiring R] β NatCast (Polynomial R)
|
Equiv.symm_bijective
|
Mathlib.Logic.Equiv.Defs
|
β {Ξ± : Sort u} {Ξ² : Sort v}, Function.Bijective Equiv.symm
|
CategoryTheory.Limits.MonoCoprod.isColimitBinaryCofanSum._proof_2
|
Mathlib.CategoryTheory.Limits.MonoCoprod
|
β {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {Iβ : Type u_3} {Iβ : Type u_4} {X : Iβ β Iβ β C}
(c : CategoryTheory.Limits.Cofan X) (cβ : CategoryTheory.Limits.Cofan (X β Sum.inl))
(cβ : CategoryTheory.Limits.Cofan (X β Sum.inr)) (hc : CategoryTheory.Limits.IsColimit c)
(hcβ : CategoryTheory.Limits.IsColimit cβ) (hcβ : CategoryTheory.Limits.IsColimit cβ) {T : C} (fβ : cβ.pt βΆ T)
(fβ : cβ.pt βΆ T),
CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.MonoCoprod.binaryCofanSum c cβ cβ hcβ hcβ).inr
(CategoryTheory.Limits.Cofan.IsColimit.desc hc fun i =>
match i with
| Sum.inl iβ => CategoryTheory.CategoryStruct.comp (cβ.inj iβ) fβ
| Sum.inr iβ => CategoryTheory.CategoryStruct.comp (cβ.inj iβ) fβ) =
fβ
|
Nat.toList_roc_eq_if
|
Init.Data.Range.Polymorphic.NatLemmas
|
β {m n : β}, (m<...=n).toList = if m + 1 β€ n then (m + 1) :: ((m + 1)<...=n).toList else []
|
AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.mk._flat_ctor
|
Mathlib.AlgebraicGeometry.Morphisms.Basic
|
β {P : AlgebraicGeometry.AffineTargetMorphismProperty},
P.toProperty.RespectsIso β
(β {X Y : AlgebraicGeometry.Scheme} [inst : AlgebraicGeometry.IsAffine Y] (f : X βΆ Y)
(r : β(Y.presheaf.obj (Opposite.op β€))), P f β P (f β£_ Y.basicOpen r)) β
(β {X Y : AlgebraicGeometry.Scheme} [inst : AlgebraicGeometry.IsAffine Y] (f : X βΆ Y)
(s : Finset β(Y.presheaf.obj (Opposite.op β€))),
Ideal.span βs = β€ β (β (r : β₯s), P (f β£_ Y.basicOpen βr)) β P f) β
P.IsLocal
|
FirstOrder.Language.LHom.casesOn
|
Mathlib.ModelTheory.LanguageMap
|
{L : FirstOrder.Language} β
{L' : FirstOrder.Language} β
{motive : (L βα΄Έ L') β Sort u_1} β
(t : L βα΄Έ L') β
((onFunction : β¦n : ββ¦ β L.Functions n β L'.Functions n) β
(onRelation : β¦n : ββ¦ β L.Relations n β L'.Relations n) β
motive { onFunction := onFunction, onRelation := onRelation }) β
motive t
|
hasFPowerSeriesOnBall_pi_iff
|
Mathlib.Analysis.Analytic.Constructions
|
β {π : Type u_2} [inst : NontriviallyNormedField π] {E : Type u_3} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace π E] {ΞΉ : Type u_9} [inst_3 : Fintype ΞΉ] {e : E} {Fm : ΞΉ β Type u_10}
[inst_4 : (i : ΞΉ) β NormedAddCommGroup (Fm i)] [inst_5 : (i : ΞΉ) β NormedSpace π (Fm i)] {f : (i : ΞΉ) β E β Fm i}
{r : ENNReal} {p : (i : ΞΉ) β FormalMultilinearSeries π E (Fm i)},
0 < r β
(HasFPowerSeriesOnBall (fun x x_1 => f x_1 x) (FormalMultilinearSeries.pi p) e r β
β (i : ΞΉ), HasFPowerSeriesOnBall (f i) (p i) e r)
|
Module.comap_annihilator
|
Mathlib.RingTheory.Ideal.Maps
|
β {R : Type u_1} {M : Type u_2} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {Rβ : Type u_4}
[inst_3 : CommSemiring Rβ] [inst_4 : Module Rβ M] [inst_5 : Algebra Rβ R] [IsScalarTower Rβ R M],
Ideal.comap (algebraMap Rβ R) (Module.annihilator R M) = Module.annihilator Rβ M
|
_private.Lean.Compiler.IR.LLVMBindings.0.LLVM.Visibility.mk
|
Lean.Compiler.IR.LLVMBindings
|
UInt64 β LLVM.Visibility
|
Lean.Elab.Tactic.Doc.TacticDoc.docString
|
Lean.Elab.Tactic.Doc
|
Lean.Elab.Tactic.Doc.TacticDoc β Option String
|
Set.mul_sInter_subset
|
Mathlib.Algebra.Group.Pointwise.Set.Lattice
|
β {Ξ± : Type u_2} [inst : Mul Ξ±] (s : Set Ξ±) (T : Set (Set Ξ±)), s * ββ T β β t β T, s * t
|
Lean.ConstantKind.ctor.elim
|
Lean.Environment
|
{motive : Lean.ConstantKind β Sort u} β
(t : Lean.ConstantKind) β t.ctorIdx = 6 β motive Lean.ConstantKind.ctor β motive t
|
IsDedekindDomain.HeightOneSpectrum.intValuation_le_pow_iff_dvd
|
Mathlib.RingTheory.DedekindDomain.AdicValuation
|
β {R : Type u_1} [inst : CommRing R] [inst_1 : IsDedekindDomain R] (v : IsDedekindDomain.HeightOneSpectrum R) (r : R)
(n : β), v.intValuation r β€ WithZero.exp (-βn) β v.asIdeal ^ n β£ Ideal.span {r}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.