name
stringlengths 2
347
| module
stringlengths 6
90
| type
stringlengths 1
5.42M
|
|---|---|---|
CommRingCat
|
Mathlib.Algebra.Category.Ring.Basic
|
Type (u + 1)
|
Mathlib.Tactic.Find.Β«_aux_Mathlib_Tactic_Find___elabRules_Mathlib_Tactic_Find_command#find__1Β»
|
Mathlib.Tactic.Find
|
Lean.Elab.Command.CommandElab
|
_private.Mathlib.Data.Nat.Multiplicity.0.Nat.Prime.emultiplicity_choose_prime_pow_add_emultiplicity._simp_1_1
|
Mathlib.Data.Nat.Multiplicity
|
β {Ξ± : Type u_1} {s t : Finset Ξ±}, Disjoint s t = β β¦a : Ξ±β¦, a β t β a β s
|
AffineEquiv.toAffineMap_injective
|
Mathlib.LinearAlgebra.AffineSpace.AffineEquiv
|
β {k : Type u_1} {Pβ : Type u_2} {Pβ : Type u_3} {Vβ : Type u_6} {Vβ : Type u_7} [inst : Ring k]
[inst_1 : AddCommGroup Vβ] [inst_2 : AddCommGroup Vβ] [inst_3 : Module k Vβ] [inst_4 : Module k Vβ]
[inst_5 : AddTorsor Vβ Pβ] [inst_6 : AddTorsor Vβ Pβ], Function.Injective AffineEquiv.toAffineMap
|
Computation.Bind.f.match_1
|
Mathlib.Data.Seq.Computation
|
{Ξ± : Type u_1} β
{Ξ² : Type u_2} β
(motive : Computation Ξ± β Computation Ξ² β Sort u_3) β
(x : Computation Ξ± β Computation Ξ²) β
((ca : Computation Ξ±) β motive (Sum.inl ca)) β ((cb : Computation Ξ²) β motive (Sum.inr cb)) β motive x
|
Std.ExtTreeSet.minD_empty
|
Std.Data.ExtTreeSet.Lemmas
|
β {Ξ± : Type u} {cmp : Ξ± β Ξ± β Ordering} [inst : Std.TransCmp cmp] {fallback : Ξ±}, β
.minD fallback = fallback
|
HahnSeries.instSMulZeroClass
|
Mathlib.RingTheory.HahnSeries.Addition
|
{Ξ : Type u_1} β
{R : Type u_3} β
[inst : PartialOrder Ξ] β
{V : Type u_8} β [inst_1 : Zero V] β [SMulZeroClass R V] β SMulZeroClass R (HahnSeries Ξ V)
|
_private.Lean.Server.FileWorker.WidgetRequests.0.Lean.Widget.unfoldMessageDataTracesContaining._unsafe_rec
|
Lean.Server.FileWorker.WidgetRequests
|
String β β β Lean.MessageData β Lean.NamingContext β Option Lean.MessageDataContext β BaseIO (Lean.MessageData Γ Bool)
|
birkhoffAverage_apply_sub_birkhoffAverage
|
Mathlib.Dynamics.BirkhoffSum.Average
|
β {R : Type u_1} {Ξ± : Type u_2} {M : Type u_3} [inst : DivisionSemiring R] [inst_1 : AddCommGroup M]
[inst_2 : Module R M] (f : Ξ± β Ξ±) (g : Ξ± β M) (n : β) (x : Ξ±),
birkhoffAverage R f g n (f x) - birkhoffAverage R f g n x = (βn)β»ΒΉ β’ (g (f^[n] x) - g x)
|
Partrec.optionCasesOn_right
|
Mathlib.Computability.Partrec
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {Ο : Type u_4} [inst : Primcodable Ξ±] [inst_1 : Primcodable Ξ²] [inst_2 : Primcodable Ο]
{o : Ξ± β Option Ξ²} {f : Ξ± β Ο} {g : Ξ± β Ξ² β. Ο},
Computable o β Computable f β Partrecβ g β Partrec fun a => Option.casesOn (o a) (Part.some (f a)) (g a)
|
Lean.InductiveVal.ctors
|
Lean.Declaration
|
Lean.InductiveVal β List Lean.Name
|
EMetric.exists_ball_subset_ball
|
Mathlib.Topology.EMetricSpace.Defs
|
β {Ξ± : Type u} [inst : PseudoEMetricSpace Ξ±] {x y : Ξ±} {Ξ΅ : ENNReal},
y β EMetric.ball x Ξ΅ β β Ξ΅' > 0, EMetric.ball y Ξ΅' β EMetric.ball x Ξ΅
|
_private.Mathlib.Geometry.Manifold.PartitionOfUnity.0.IsOpen.exists_msmooth_support_eq._simp_1_2
|
Mathlib.Geometry.Manifold.PartitionOfUnity
|
β {Ξ± : Type u} (x : Ξ±) (a b : Set Ξ±), (x β a β© b) = (x β a β§ x β b)
|
Lean.Elab.Term.UseImplicitLambdaResult.yes.inj
|
Lean.Elab.Term.TermElabM
|
β {expectedType expectedType_1 : Lean.Expr},
Lean.Elab.Term.UseImplicitLambdaResult.yes expectedType = Lean.Elab.Term.UseImplicitLambdaResult.yes expectedType_1 β
expectedType = expectedType_1
|
RightDerivMeasurableAux.B
|
Mathlib.Analysis.Calculus.FDeriv.Measurable
|
{F : Type u_1} β [inst : NormedAddCommGroup F] β [NormedSpace β F] β (β β F) β Set F β β β β β β β Set β
|
Finset.mem_mul
|
Mathlib.Algebra.Group.Pointwise.Finset.Basic
|
β {Ξ± : Type u_2} [inst : DecidableEq Ξ±] [inst_1 : Mul Ξ±] {s t : Finset Ξ±} {x : Ξ±},
x β s * t β β y β s, β z β t, y * z = x
|
List.head_cons_tail
|
Mathlib.Data.List.Basic
|
β {Ξ± : Type u} (x : List Ξ±) (h : x β []), x.head h :: x.tail = x
|
Lean.Lsp.WorkspaceEdit._sizeOf_1
|
Lean.Data.Lsp.Basic
|
Lean.Lsp.WorkspaceEdit β β
|
Filter.limsSup_top
|
Mathlib.Order.LiminfLimsup
|
β {Ξ± : Type u_1} [inst : CompleteLattice Ξ±], β€.limsSup = β€
|
AlgebraicGeometry.Scheme.IdealSheafData.radical_sup
|
Mathlib.AlgebraicGeometry.IdealSheaf.Basic
|
β {X : AlgebraicGeometry.Scheme} {I J : X.IdealSheafData}, (I β J).radical = (I.radical β J.radical).radical
|
AffineSubspace.sOppSide_pointReflection
|
Mathlib.Analysis.Convex.Side
|
β {R : Type u_1} {V : Type u_2} {P : Type u_4} [inst : Field R] [inst_1 : LinearOrder R]
[inst_2 : IsStrictOrderedRing R] [inst_3 : AddCommGroup V] [inst_4 : Module R V] [inst_5 : AddTorsor V P]
{s : AffineSubspace R P} {x y : P}, x β s β y β s β s.SOppSide y ((AffineEquiv.pointReflection R x) y)
|
_private.Lean.Compiler.LCNF.SpecInfo.0.Lean.Compiler.LCNF.saveSpecParamInfo.match_7
|
Lean.Compiler.LCNF.SpecInfo
|
(motive : Lean.Compiler.LCNF.SpecParamInfo β Sort u_1) β
(info : Lean.Compiler.LCNF.SpecParamInfo) β
(Unit β motive Lean.Compiler.LCNF.SpecParamInfo.fixedNeutral) β
((x : Lean.Compiler.LCNF.SpecParamInfo) β motive x) β motive info
|
CommGrpCat.ctorIdx
|
Mathlib.Algebra.Category.Grp.Basic
|
CommGrpCat β β
|
UInt8.mul_def
|
Init.Data.UInt.Lemmas
|
β (a b : UInt8), a * b = { toBitVec := a.toBitVec * b.toBitVec }
|
Matrix.toLinearEquiv'_symm_apply
|
Mathlib.LinearAlgebra.Matrix.ToLinearEquiv
|
β {n : Type u_1} [inst : Fintype n] {R : Type u_2} [inst_1 : CommRing R] [inst_2 : DecidableEq n] (P : Matrix n n R)
(h : Invertible P), β(P.toLinearEquiv' h).symm = Matrix.toLin' β
P
|
AddMonoidHom.add._proof_1
|
Mathlib.Algebra.Group.Hom.Basic
|
β {M : Type u_2} {N : Type u_1} [inst : AddZeroClass M] [inst_1 : AddCommMonoid N] (f g : M β+ N), f 0 + g 0 = 0
|
FreeAddGroup.instAddGroup._proof_10
|
Mathlib.GroupTheory.FreeGroup.Basic
|
β {Ξ± : Type u_1} (a : FreeAddGroup Ξ±), -a + a = 0
|
Computation.LiftRel.symm
|
Mathlib.Data.Seq.Computation
|
β {Ξ± : Type u} (R : Ξ± β Ξ± β Prop), Symmetric R β Symmetric (Computation.LiftRel R)
|
MeasureTheory.Measure.nullMeasurable_comp_snd
|
Mathlib.MeasureTheory.Measure.Prod
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [inst : MeasurableSpace Ξ±] [inst_1 : MeasurableSpace Ξ²]
[inst_2 : MeasurableSpace Ξ³] {ΞΌ : MeasureTheory.Measure Ξ±} {Ξ½ : MeasureTheory.Measure Ξ²} [MeasureTheory.SFinite Ξ½]
[NeZero ΞΌ] {f : Ξ² β Ξ³}, MeasureTheory.NullMeasurable (f β Prod.snd) (ΞΌ.prod Ξ½) β MeasureTheory.NullMeasurable f Ξ½
|
Set.inter_mul_union_subset_union
|
Mathlib.Algebra.Group.Pointwise.Set.Basic
|
β {Ξ± : Type u_2} [inst : Mul Ξ±] {sβ sβ tβ tβ : Set Ξ±}, sβ β© sβ * (tβ βͺ tβ) β sβ * tβ βͺ sβ * tβ
|
_private.Mathlib.Combinatorics.SimpleGraph.Paths.0.SimpleGraph.Walk.IsCycle.count_support._proof_1_9
|
Mathlib.Combinatorics.SimpleGraph.Paths
|
β {V : Type u_1} {G : SimpleGraph V} {v : V} [inst : DecidableEq V] {c : G.Walk v v}
(this_1 : List.count v c.support.tail = 1),
(List.findIdxs (fun x => decide (x = v)) c.support.tail)[0] + 2 β€ c.support.length β
(List.findIdxs (fun x => decide (x = v)) c.support.tail)[0] + 1 < c.support.length
|
UInt64.toUSize_ofFin
|
Init.Data.UInt.Lemmas
|
β (n : Fin UInt64.size), (UInt64.ofFin n).toUSize = USize.ofNat βn
|
WithZero.map'_comp
|
Mathlib.Algebra.GroupWithZero.WithZero
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [inst : MulOneClass Ξ±] [inst_1 : MulOneClass Ξ²] [inst_2 : MulOneClass Ξ³]
(f : Ξ± β* Ξ²) (g : Ξ² β* Ξ³), WithZero.map' (g.comp f) = (WithZero.map' g).comp (WithZero.map' f)
|
Filter.disjoint_prod
|
Mathlib.Order.Filter.Prod
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Filter Ξ±} {g : Filter Ξ²} {f' : Filter Ξ±} {g' : Filter Ξ²},
Disjoint (f ΓΛ’ g) (f' ΓΛ’ g') β Disjoint f f' β¨ Disjoint g g'
|
GaloisConnection.u_eq_top
|
Mathlib.Order.GaloisConnection.Defs
|
β {Ξ± : Type u} {Ξ² : Type v} [inst : PartialOrder Ξ±] [inst_1 : Preorder Ξ²] [inst_2 : OrderTop Ξ±] {l : Ξ± β Ξ²} {u : Ξ² β Ξ±},
GaloisConnection l u β β {x : Ξ²}, u x = β€ β l β€ β€ x
|
instDistribPNat
|
Mathlib.Data.PNat.Basic
|
Distrib β+
|
_private.Mathlib.RingTheory.SimpleModule.Isotypic.0.isFullyInvariant_iff_le_imp_isotypicComponent_le.match_1_5
|
Mathlib.RingTheory.SimpleModule.Isotypic
|
β {R : Type u_2} {M : Type u_1} [inst : Ring R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] (S S' : Submodule R M)
(e : β₯S' ββ[R] β₯S) (motive : (β h, h ββ S.subtype = S'.subtype ββ βe.symm) β Prop)
(x : β h, h ββ S.subtype = S'.subtype ββ βe.symm),
(β (p : M ββ[R] M) (eq : p ββ S.subtype = S'.subtype ββ βe.symm), motive β―) β motive x
|
Lean.Parser.Command.structFields.formatter
|
Lean.Parser.Command
|
Lean.PrettyPrinter.Formatter
|
Representation.mem_invariants_iff_of_forall_mem_zpowers
|
Mathlib.RepresentationTheory.Invariants
|
β {k : Type u_1} {G : Type u_2} {V : Type u_3} [inst : CommSemiring k] [inst_1 : Group G] [inst_2 : AddCommMonoid V]
[inst_3 : Module k V] (Ο : Representation k G V) (g : G),
(β (x : G), x β Subgroup.zpowers g) β β (x : V), x β Ο.invariants β (Ο g) x = x
|
Lean.Grind.CommRing.Poly.combine.go.eq_def
|
Init.Grind.Ring.CommSolver
|
β (fuel : β) (pβ pβ : Lean.Grind.CommRing.Poly),
Lean.Grind.CommRing.Poly.combine.go fuel pβ pβ =
match fuel with
| 0 => pβ.concat pβ
| fuel.succ =>
match pβ, pβ with
| Lean.Grind.CommRing.Poly.num kβ, Lean.Grind.CommRing.Poly.num kβ => Lean.Grind.CommRing.Poly.num (kβ + kβ)
| Lean.Grind.CommRing.Poly.num kβ, Lean.Grind.CommRing.Poly.add kβ mβ pβ =>
(Lean.Grind.CommRing.Poly.add kβ mβ pβ).addConst kβ
| Lean.Grind.CommRing.Poly.add kβ mβ pβ, Lean.Grind.CommRing.Poly.num kβ =>
(Lean.Grind.CommRing.Poly.add kβ mβ pβ).addConst kβ
| Lean.Grind.CommRing.Poly.add kβ mβ pβ, Lean.Grind.CommRing.Poly.add kβ mβ pβ =>
match mβ.grevlex mβ with
| Ordering.eq =>
have k := kβ + kβ;
bif k == 0 then Lean.Grind.CommRing.Poly.combine.go fuel pβ pβ
else Lean.Grind.CommRing.Poly.add k mβ (Lean.Grind.CommRing.Poly.combine.go fuel pβ pβ)
| Ordering.gt =>
Lean.Grind.CommRing.Poly.add kβ mβ
(Lean.Grind.CommRing.Poly.combine.go fuel pβ (Lean.Grind.CommRing.Poly.add kβ mβ pβ))
| Ordering.lt =>
Lean.Grind.CommRing.Poly.add kβ mβ
(Lean.Grind.CommRing.Poly.combine.go fuel (Lean.Grind.CommRing.Poly.add kβ mβ pβ) pβ)
|
Mathlib.Tactic.IntervalCases.Methods.bisect
|
Mathlib.Tactic.IntervalCases
|
Mathlib.Tactic.IntervalCases.Methods β
Lean.MVarId β
Subarray Mathlib.Tactic.IntervalCases.IntervalCasesSubgoal β
Mathlib.Tactic.IntervalCases.Bound β
Mathlib.Tactic.IntervalCases.Bound β Lean.Expr β Lean.Expr β Lean.Expr β Lean.Expr β Lean.Expr β Lean.MetaM Unit
|
CategoryTheory.finCategoryOpposite
|
Mathlib.CategoryTheory.FinCategory.Basic
|
{J : Type v} β [inst : CategoryTheory.SmallCategory J] β [CategoryTheory.FinCategory J] β CategoryTheory.FinCategory Jα΅α΅
|
Mathlib.Tactic.rflTac
|
Mathlib.Tactic.Relation.Rfl
|
Lean.Elab.Tactic.TacticM Unit
|
IsCompact.lt_sInf_iff_of_continuous
|
Mathlib.Topology.Order.Compact
|
β {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : ConditionallyCompleteLinearOrder Ξ±] [inst_1 : TopologicalSpace Ξ±]
[inst_2 : TopologicalSpace Ξ²] [ClosedIicTopology Ξ±] {f : Ξ² β Ξ±} {K : Set Ξ²},
IsCompact K β K.Nonempty β ContinuousOn f K β β (y : Ξ±), y < sInf (f '' K) β β x β K, y < f x
|
_private.Lean.Compiler.IR.LLVMBindings.0.LLVM.Builder.mk._flat_ctor
|
Lean.Compiler.IR.LLVMBindings
|
{Context : Sort u_1} β {ctx : Context} β USize β LLVM.Builder ctx
|
Std.Tactic.BVDecide.BVExpr.bitblast.blastExtract._proof_6
|
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.Extract
|
β {newWidth : β}, β curr β€ newWidth, Β¬curr < newWidth β curr = newWidth
|
VAddAssocClass.opposite_mid
|
Mathlib.Algebra.Group.Action.Opposite
|
β {M : Type u_5} {N : Type u_6} [inst : Add N] [inst_1 : VAdd M N] [VAddCommClass M N N], VAddAssocClass M Nα΅α΅α΅ N
|
znumCoe
|
Mathlib.Data.Num.Basic
|
{Ξ± : Type u_1} β [Zero Ξ±] β [One Ξ±] β [Add Ξ±] β [Neg Ξ±] β CoeHTCT ZNum Ξ±
|
Vector.countP_toList
|
Init.Data.Vector.Lemmas
|
β {Ξ± : Type u_1} {n : β} {p : Ξ± β Bool} {xs : Vector Ξ± n}, List.countP p xs.toList = Vector.countP p xs
|
CStarMatrix.add_mul
|
Mathlib.Analysis.CStarAlgebra.CStarMatrix
|
β {m : Type u_1} {n : Type u_2} {A : Type u_5} {l : Type u_7} [inst : Fintype m] [inst_1 : NonUnitalNonAssocSemiring A]
(L M : CStarMatrix l m A) (N : CStarMatrix m n A), (L + M) * N = L * N + M * N
|
MonoidAlgebra.instFree
|
Mathlib.LinearAlgebra.Finsupp.VectorSpace
|
β {M : Type u_1} {R : Type u_2} {S : Type u_3} [inst : Semiring R] [inst_1 : Semiring S] [inst_2 : Module R S]
[Module.Free R S], Module.Free R (MonoidAlgebra S M)
|
CategoryTheory.IndParallelPairPresentation
|
Mathlib.CategoryTheory.Limits.Indization.ParallelPair
|
{C : Type uβ} β
[inst : CategoryTheory.Category.{vβ, uβ} C] β
{A B : CategoryTheory.Functor Cα΅α΅ (Type vβ)} β (A βΆ B) β (A βΆ B) β Type (max uβ (vβ + 1))
|
_private.Lean.Expr.0.Lean.Expr.isLet.match_1
|
Lean.Expr
|
(motive : Lean.Expr β Sort u_1) β
(x : Lean.Expr) β
((declName : Lean.Name) β
(type value body : Lean.Expr) β (nondep : Bool) β motive (Lean.Expr.letE declName type value body nondep)) β
((x : Lean.Expr) β motive x) β motive x
|
_private.Mathlib.Analysis.MeanInequalities.0.ENNReal.inner_le_weight_mul_Lp_of_nonneg._simp_1_4
|
Mathlib.Analysis.MeanInequalities
|
β {p q : Prop}, (Β¬(p β¨ q)) = (Β¬p β§ Β¬q)
|
CategoryTheory.Functor.WellOrderInductionData.lift
|
Mathlib.CategoryTheory.SmallObject.WellOrderInductionData
|
{J : Type u} β
[inst : LinearOrder J] β
[inst_1 : SuccOrder J] β
{F : CategoryTheory.Functor Jα΅α΅ (Type v)} β
F.WellOrderInductionData β
(j : J) β Order.IsSuccLimit j β β(β―.functor.op.comp F).sections β F.obj (Opposite.op j)
|
AList
|
Mathlib.Data.List.AList
|
{Ξ± : Type u} β (Ξ± β Type v) β Type (max u v)
|
_private.Lean.Parser.Basic.0.Lean.Parser.strAux.parse._unsafe_rec
|
Lean.Parser.Basic
|
String β String β String.Pos.Raw β Lean.Parser.ParserContext β Lean.Parser.ParserState β Lean.Parser.ParserState
|
Std.Time.TimeZone.ZoneRules.mk._flat_ctor
|
Std.Time.Zoned.ZoneRules
|
Std.Time.TimeZone.LocalTimeType β Array Std.Time.TimeZone.Transition β Std.Time.TimeZone.ZoneRules
|
Encodable.encodeSubtype
|
Mathlib.Logic.Encodable.Basic
|
{Ξ± : Type u_1} β {P : Ξ± β Prop} β [encA : Encodable Ξ±] β { a // P a } β β
|
_private.Batteries.Lean.Meta.UnusedNames.0.Lean.LocalContext.getUnusedUserNameIndex.match_1
|
Batteries.Lean.Meta.UnusedNames
|
(motive : Lean.Name.MatchUpToIndexSuffix β Sort u_1) β
(x : Lean.Name.MatchUpToIndexSuffix) β
(Unit β motive Lean.Name.MatchUpToIndexSuffix.exactMatch) β
(Unit β motive Lean.Name.MatchUpToIndexSuffix.noMatch) β
((i : β) β motive (Lean.Name.MatchUpToIndexSuffix.suffixMatch i)) β motive x
|
Topology.WithLower.toLower_lt_toLower
|
Mathlib.Topology.Order.LowerUpperTopology
|
β {Ξ± : Type u_1} [inst : Preorder Ξ±] {x y : Ξ±}, Topology.WithLower.toLower x < Topology.WithLower.toLower y β x < y
|
AddEquiv.toAddSemigrpIso._proof_1
|
Mathlib.Algebra.Category.Semigrp.Basic
|
β {X Y : Type u_1} [inst : AddSemigroup X] [inst_1 : AddSemigroup Y] (e : X β+ Y),
CategoryTheory.CategoryStruct.comp (AddSemigrp.ofHom e.toAddHom) (AddSemigrp.ofHom e.symm.toAddHom) =
CategoryTheory.CategoryStruct.id (AddSemigrp.of X)
|
Set.instDistribLattice._proof_3
|
Mathlib.Data.Set.Basic
|
β {Ξ± : Type u_1} (a b : Ξ± β Prop), a < b β a β€ b β§ Β¬b β€ a
|
AlgEquiv.mk.injEq
|
Mathlib.Algebra.Algebra.Equiv
|
β {R : Type u} {A : Type v} {B : Type w} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Semiring B]
[inst_3 : Algebra R A] [inst_4 : Algebra R B] (toEquiv : A β B)
(map_mul' : β (x y : A), toEquiv.toFun (x * y) = toEquiv.toFun x * toEquiv.toFun y)
(map_add' : β (x y : A), toEquiv.toFun (x + y) = toEquiv.toFun x + toEquiv.toFun y)
(commutes' : β (r : R), toEquiv.toFun ((algebraMap R A) r) = (algebraMap R B) r) (toEquiv_1 : A β B)
(map_mul'_1 : β (x y : A), toEquiv_1.toFun (x * y) = toEquiv_1.toFun x * toEquiv_1.toFun y)
(map_add'_1 : β (x y : A), toEquiv_1.toFun (x + y) = toEquiv_1.toFun x + toEquiv_1.toFun y)
(commutes'_1 : β (r : R), toEquiv_1.toFun ((algebraMap R A) r) = (algebraMap R B) r),
({ toEquiv := toEquiv, map_mul' := map_mul', map_add' := map_add', commutes' := commutes' } =
{ toEquiv := toEquiv_1, map_mul' := map_mul'_1, map_add' := map_add'_1, commutes' := commutes'_1 }) =
(toEquiv = toEquiv_1)
|
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.getKey!_union._simp_1_2
|
Std.Data.DTreeMap.Internal.Lemmas
|
β {Ξ± : Type u} {instOrd : Ord Ξ±} {a b : Ξ±}, (compare a b β Ordering.eq) = ((a == b) = false)
|
MeasureTheory.AEEqFun.coeFn_compMeasurable
|
Mathlib.MeasureTheory.Function.AEEqFun
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [inst : MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±}
[inst_1 : TopologicalSpace Ξ²] [inst_2 : TopologicalSpace Ξ³] [inst_3 : MeasurableSpace Ξ²]
[inst_4 : TopologicalSpace.PseudoMetrizableSpace Ξ²] [inst_5 : BorelSpace Ξ²] [inst_6 : MeasurableSpace Ξ³]
[inst_7 : TopologicalSpace.PseudoMetrizableSpace Ξ³] [inst_8 : OpensMeasurableSpace Ξ³]
[inst_9 : SecondCountableTopology Ξ³] (g : Ξ² β Ξ³) (hg : Measurable g) (f : Ξ± ββ[ΞΌ] Ξ²),
β(MeasureTheory.AEEqFun.compMeasurable g hg f) =α΅[ΞΌ] g β βf
|
ofUnits_units_gc
|
Mathlib.Algebra.Group.Submonoid.Units
|
β {M : Type u_1} [inst : Monoid M], GaloisConnection Subgroup.ofUnits Submonoid.units
|
_private.Mathlib.RingTheory.ZMod.UnitsCyclic.0.ZMod.isCyclic_units_iff_of_odd._simp_1_1
|
Mathlib.RingTheory.ZMod.UnitsCyclic
|
IsCyclic (ZMod 1)Λ£ = True
|
Module.DirectLimit.lift_injective
|
Mathlib.Algebra.Colimit.Module
|
β {R : Type u_1} [inst : Semiring R] {ΞΉ : Type u_2} [inst_1 : Preorder ΞΉ] {G : ΞΉ β Type u_3} [inst_2 : DecidableEq ΞΉ]
[inst_3 : (i : ΞΉ) β AddCommMonoid (G i)] [inst_4 : (i : ΞΉ) β Module R (G i)] {f : (i j : ΞΉ) β i β€ j β G i ββ[R] G j}
{P : Type u_4} [inst_5 : AddCommMonoid P] [inst_6 : Module R P] (g : (i : ΞΉ) β G i ββ[R] P)
(Hg : β (i j : ΞΉ) (hij : i β€ j) (x : G i), (g j) ((f i j hij) x) = (g i) x) [IsDirectedOrder ΞΉ],
(β (i : ΞΉ), Function.Injective β(g i)) β Function.Injective β(Module.DirectLimit.lift R ΞΉ G f g Hg)
|
NonUnitalStarAlgHom.prod_fst_snd
|
Mathlib.Algebra.Star.StarAlgHom
|
β {R : Type u_1} {A : Type u_2} {B : Type u_3} [inst : Monoid R] [inst_1 : NonUnitalNonAssocSemiring A]
[inst_2 : DistribMulAction R A] [inst_3 : Star A] [inst_4 : NonUnitalNonAssocSemiring B]
[inst_5 : DistribMulAction R B] [inst_6 : Star B],
(NonUnitalStarAlgHom.fst R A B).prod (NonUnitalStarAlgHom.snd R A B) = 1
|
mul_le_mul_iff_leftβ._simp_1
|
Mathlib.Algebra.Order.GroupWithZero.Unbundled.Defs
|
β {Ξ± : Type u_1} [inst : Mul Ξ±] [inst_1 : Zero Ξ±] [inst_2 : Preorder Ξ±] {a b c : Ξ±} [MulPosMono Ξ±] [MulPosReflectLE Ξ±],
0 < a β (b * a β€ c * a) = (b β€ c)
|
SetTheory.PGame.LeftMoves.match_1
|
Mathlib.SetTheory.PGame.Basic
|
(motive : SetTheory.PGame β Sort u_2) β
(x : SetTheory.PGame) β
((l Ξ² : Type u_1) β
(a : l β SetTheory.PGame) β (a_1 : Ξ² β SetTheory.PGame) β motive (SetTheory.PGame.mk l Ξ² a a_1)) β
motive x
|
AddAction.IsTrivialBlock.vadd_iff
|
Mathlib.GroupTheory.GroupAction.Blocks
|
β {M : Type u_3} {Ξ± : Type u_4} [inst : AddGroup M] [inst_1 : AddAction M Ξ±] {B : Set Ξ±} (g : M),
AddAction.IsTrivialBlock (g +α΅₯ B) β AddAction.IsTrivialBlock B
|
CategoryTheory.coeComonad
|
Mathlib.CategoryTheory.Monad.Basic
|
{C : Type uβ} β
[inst : CategoryTheory.Category.{vβ, uβ} C] β Coe (CategoryTheory.Comonad C) (CategoryTheory.Functor C C)
|
LLVM.buildLoad2
|
Lean.Compiler.IR.LLVMBindings
|
{ctx : LLVM.Context} β
LLVM.Builder ctx β LLVM.LLVMType ctx β LLVM.Value ctx β optParam String "" β BaseIO (LLVM.Value ctx)
|
_private.Mathlib.Combinatorics.SimpleGraph.Paths.0.SimpleGraph.Walk.IsCycle.count_support_of_mem._proof_1_16
|
Mathlib.Combinatorics.SimpleGraph.Paths
|
β {V : Type u_1} {G : SimpleGraph V} {u v : V} [inst : DecidableEq V] {c : G.Walk v v},
u β c.support β
-1 * β(List.count u c.support) + 1 β€ 0 β
u = c.support.head β― β List.findIdx (fun x => decide (x = u)) c.support < c.support.length
|
Lean.Meta.Grind.UnitLike.State
|
Lean.Meta.Tactic.Grind.Types
|
Type
|
CategoryTheory.NatTrans.CommShiftβ.commShift_app
|
Mathlib.CategoryTheory.Shift.CommShiftTwo
|
β {Cβ : Type u_1} {Cβ : Type u_3} {D : Type u_5} {inst : CategoryTheory.Category.{v_1, u_1} Cβ}
{inst_1 : CategoryTheory.Category.{v_3, u_3} Cβ} {inst_2 : CategoryTheory.Category.{v_5, u_5} D} {M : Type u_6}
{inst_3 : AddCommMonoid M} {inst_4 : CategoryTheory.HasShift Cβ M} {inst_5 : CategoryTheory.HasShift Cβ M}
{inst_6 : CategoryTheory.HasShift D M} {Gβ Gβ : CategoryTheory.Functor Cβ (CategoryTheory.Functor Cβ D)} {Ο : Gβ βΆ Gβ}
{h : CategoryTheory.CommShiftβSetup D M} {inst_7 : Gβ.CommShiftβ h} {inst_8 : Gβ.CommShiftβ h}
[self : CategoryTheory.NatTrans.CommShiftβ Ο h] (Xβ : Cβ), CategoryTheory.NatTrans.CommShift (Ο.app Xβ) M
|
OmegaCompletePartialOrder.ContinuousHom.bind._proof_1
|
Mathlib.Order.OmegaCompletePartialOrder
|
β {Ξ± : Type u_2} [inst : OmegaCompletePartialOrder Ξ±] {Ξ² Ξ³ : Type u_1} (f : Ξ± βπ Part Ξ²) (g : Ξ± βπ Ξ² β Part Ξ³)
(c : OmegaCompletePartialOrder.Chain Ξ±),
((βf).partBind g.toOrderHom).toFun (OmegaCompletePartialOrder.ΟSup c) =
OmegaCompletePartialOrder.ΟSup (c.map ((βf).partBind g.toOrderHom))
|
Std.DTreeMap.self_le_maxKeyD_insert
|
Std.Data.DTreeMap.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {cmp : Ξ± β Ξ± β Ordering} {t : Std.DTreeMap Ξ± Ξ² cmp} [Std.TransCmp cmp] {k : Ξ±} {v : Ξ² k}
{fallback : Ξ±}, (cmp k ((t.insert k v).maxKeyD fallback)).isLE = true
|
Multiset.inter_le_ndinter
|
Mathlib.Data.Multiset.FinsetOps
|
β {Ξ± : Type u_1} [inst : DecidableEq Ξ±] (s t : Multiset Ξ±), s β© t β€ s.ndinter t
|
Finset.min'_subset
|
Mathlib.Data.Finset.Max
|
β {Ξ± : Type u_2} [inst : LinearOrder Ξ±] {s t : Finset Ξ±} (H : s.Nonempty) (hst : s β t), t.min' β― β€ s.min' H
|
Multiset.prod_toList
|
Mathlib.Algebra.BigOperators.Group.Multiset.Defs
|
β {M : Type u_3} [inst : CommMonoid M] (s : Multiset M), s.toList.prod = s.prod
|
Associates.exists_non_zero_rep
|
Mathlib.Algebra.GroupWithZero.Associated
|
β {M : Type u_1} [inst : MonoidWithZero M] {a : Associates M}, a β 0 β β a0, a0 β 0 β§ Associates.mk a0 = a
|
CategoryTheory.BasedFunctor._aux_Mathlib_CategoryTheory_FiberedCategory_BasedCategory___unexpand_CategoryTheory_BasedFunctor_id_1
|
Mathlib.CategoryTheory.FiberedCategory.BasedCategory
|
Lean.PrettyPrinter.Unexpander
|
Orientation.definition._@.Mathlib.Analysis.InnerProductSpace.TwoDim.2712757639._hygCtx._hyg.2
|
Mathlib.Analysis.InnerProductSpace.TwoDim
|
{E : Type u_1} β
[inst : NormedAddCommGroup E] β
[inst_1 : InnerProductSpace β E] β [Fact (Module.finrank β E = 2)] β Orientation β E (Fin 2) β E ββα΅’[β] E
|
Std.Time.ZonedDateTime.nowAt
|
Std.Time.Zoned
|
String β IO Std.Time.ZonedDateTime
|
Std.HashSet.Raw.size
|
Std.Data.HashSet.Raw
|
{Ξ± : Type u} β Std.HashSet.Raw Ξ± β β
|
CategoryTheory.Functor.essImage.counit_isIso
|
Mathlib.CategoryTheory.Adjunction.Reflective
|
β {C : Type uβ} {D : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] [inst_1 : CategoryTheory.Category.{vβ, uβ} D]
{j : CategoryTheory.Functor C D} [inst_2 : CategoryTheory.Coreflective j] {A : D},
j.essImage A β CategoryTheory.IsIso ((CategoryTheory.coreflectorAdjunction j).counit.app A)
|
Lean.Data.Trie.find?
|
Lean.Data.Trie
|
{Ξ± : Type} β Lean.Data.Trie Ξ± β String β Option Ξ±
|
Array.erase_comm
|
Init.Data.Array.Erase
|
β {Ξ± : Type u_1} [inst : BEq Ξ±] [LawfulBEq Ξ±] (a b : Ξ±) {xs : Array Ξ±}, (xs.erase a).erase b = (xs.erase b).erase a
|
_private.Mathlib.Algebra.QuadraticDiscriminant.0.quadratic_eq_zero_iff._simp_1_5
|
Mathlib.Algebra.QuadraticDiscriminant
|
β {Mβ : Type u_1} [inst : MonoidWithZero Mβ] {a : Mβ} [NoZeroDivisors Mβ] (n : β), a β 0 β (a ^ n = 0) = False
|
Real.tendsto_pow_mul_exp_neg_atTop_nhds_zero
|
Mathlib.Analysis.SpecialFunctions.Exp
|
β (n : β), Filter.Tendsto (fun x => x ^ n * Real.exp (-x)) Filter.atTop (nhds 0)
|
Lean.IR.EmitC.emitReuse
|
Lean.Compiler.IR.EmitC
|
Lean.IR.VarId β Lean.IR.VarId β Lean.IR.CtorInfo β Bool β Array Lean.IR.Arg β Lean.IR.EmitC.M Unit
|
Std.LinearPreorderPackage.ofOrd._proof_4
|
Init.Data.Order.PackageFactories
|
β (Ξ± : Type u_1) (args : Std.Packages.LinearPreorderOfOrdArgs Ξ±), Std.IsPreorder Ξ±
|
Std.ExtDTreeMap.mem_keys
|
Std.Data.ExtDTreeMap.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {cmp : Ξ± β Ξ± β Ordering} {t : Std.ExtDTreeMap Ξ± Ξ² cmp} [Std.LawfulEqCmp cmp]
[inst : Std.TransCmp cmp] {k : Ξ±}, k β t.keys β k β t
|
uniformity_lift_le_comp
|
Mathlib.Topology.UniformSpace.Defs
|
β {Ξ± : Type ua} {Ξ² : Type ub} [inst : UniformSpace Ξ±] {f : SetRel Ξ± Ξ± β Filter Ξ²},
Monotone f β ((uniformity Ξ±).lift fun s => f (SetRel.comp s s)) β€ (uniformity Ξ±).lift f
|
CategoryTheory.Presheaf.isLimitOfIsSheaf._proof_1
|
Mathlib.CategoryTheory.Sites.Sheaf
|
β {C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] {A : Type u_4}
[inst_1 : CategoryTheory.Category.{u_3, u_4} A] (J : CategoryTheory.GrothendieckTopology C)
(P : CategoryTheory.Functor Cα΅α΅ A) {X : C} (S : J.Cover X) (hP : CategoryTheory.Presheaf.IsSheaf J P)
(E : CategoryTheory.Limits.Cone (S.index P).multicospan) (j : CategoryTheory.Limits.WalkingMulticospan S.shape),
CategoryTheory.CategoryStruct.comp (hP.amalgamate S (fun x => CategoryTheory.Limits.Multifork.ΞΉ E x) β―)
((S.multifork P).Ο.app j) =
E.Ο.app j
|
Std.DHashMap.Raw.Const.get!_union_of_not_mem_right
|
Std.Data.DHashMap.RawLemmas
|
β {Ξ± : Type u} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] {Ξ² : Type v} {mβ mβ : Std.DHashMap.Raw Ξ± fun x => Ξ²} [EquivBEq Ξ±]
[LawfulHashable Ξ±] [inst_4 : Inhabited Ξ²],
mβ.WF β mβ.WF β β {k : Ξ±}, k β mβ β Std.DHashMap.Raw.Const.get! (mβ βͺ mβ) k = Std.DHashMap.Raw.Const.get! mβ k
|
GrpWithZero
|
Mathlib.Algebra.Category.GrpWithZero
|
Type (u_1 + 1)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.