name
string
module
string
type
string
CategoryTheory.Pretriangulated.invRotateIsoRotateRotateShiftFunctorNegOne
Mathlib.CategoryTheory.Triangulated.TriangleShift
(C : Type u) β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ [inst_1 : CategoryTheory.Preadditive C] β†’ [inst_2 : CategoryTheory.HasShift C β„€] β†’ [βˆ€ (n : β„€), (CategoryTheory.shiftFunctor C n).Additive] β†’ CategoryTheory.Pretriangulated.invRotate C β‰… (CategoryTheory.Pretriangulated.rotate C).comp ((CategoryTheory.Pretriangulated.rotate C).comp (CategoryTheory.Pretriangulated.Triangle.shiftFunctor C (-1)))
_private.Mathlib.Algebra.Homology.HomotopyCategory.HomComplexSingle.0.CochainComplex.HomComplex.Cochain.Ξ΄_fromSingleMk._proof_1_3
Mathlib.Algebra.Homology.HomotopyCategory.HomComplexSingle
βˆ€ {p q n : β„€}, p + n = q β†’ βˆ€ (n' q' : β„€), p + n' = q' β†’ Β¬q + 1 = q' β†’ Β¬n + 1 = n'
_private.Mathlib.Topology.Instances.AddCircle.DenseSubgroup.0.dense_addSubgroupClosure_pair_iff._simp_1_8
Mathlib.Topology.Instances.AddCircle.DenseSubgroup
βˆ€ {Gβ‚€ : Type u_3} [inst : GroupWithZero Gβ‚€] {a : Gβ‚€} (n : β„€), a β‰  0 β†’ (a ^ n = 0) = False
ContinuousAlternatingMap.piLinearEquiv._proof_4
Mathlib.Topology.Algebra.Module.Alternating.Basic
βˆ€ {A : Type u_1} {M : Type u_2} {ΞΉ : Type u_4} [inst : Semiring A] [inst_1 : AddCommMonoid M] [inst_2 : TopologicalSpace M] [inst_3 : Module A M] {ΞΉ' : Type u_5} {M' : ΞΉ' β†’ Type u_3} [inst_4 : (i : ΞΉ') β†’ AddCommMonoid (M' i)] [inst_5 : (i : ΞΉ') β†’ TopologicalSpace (M' i)] [inst_6 : βˆ€ (i : ΞΉ'), ContinuousAdd (M' i)] [inst_7 : (i : ΞΉ') β†’ Module A (M' i)] (x x_1 : (i : ΞΉ') β†’ M [β‹€^ΞΉ]β†’L[A] M' i), ContinuousAlternatingMap.piEquiv.toFun (x + x_1) = ContinuousAlternatingMap.piEquiv.toFun (x + x_1)
_private.Mathlib.Analysis.Complex.Hadamard.0.Complex.HadamardThreeLines.norm_le_interp_of_mem_verticalClosedStrip₀₁'._simp_1_6
Mathlib.Analysis.Complex.Hadamard
βˆ€ {Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β†’ Ξ²) (s : Set Ξ±) (y : Ξ²), (y ∈ f '' s) = βˆƒ x ∈ s, f x = y
BiheytingHom.comp_apply
Mathlib.Order.Heyting.Hom
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} {Ξ³ : Type u_4} [inst : BiheytingAlgebra Ξ±] [inst_1 : BiheytingAlgebra Ξ²] [inst_2 : BiheytingAlgebra Ξ³] (f : BiheytingHom Ξ² Ξ³) (g : BiheytingHom Ξ± Ξ²) (a : Ξ±), (f.comp g) a = f (g a)
ValuativeRel.IsRankLeOne
Mathlib.RingTheory.Valuation.ValuativeRel.Basic
(R : Type u_1) β†’ [inst : CommRing R] β†’ [ValuativeRel R] β†’ Prop
QuadraticMap.Isometry.proj_apply
Mathlib.LinearAlgebra.QuadraticForm.Prod
βˆ€ {ΞΉ : Type u_1} {R : Type u_2} {P : Type u_7} {Mα΅’ : ΞΉ β†’ Type u_8} [inst : CommSemiring R] [inst_1 : (i : ΞΉ) β†’ AddCommMonoid (Mα΅’ i)] [inst_2 : AddCommMonoid P] [inst_3 : (i : ΞΉ) β†’ Module R (Mα΅’ i)] [inst_4 : Module R P] [inst_5 : Fintype ΞΉ] [inst_6 : DecidableEq ΞΉ] (i : ΞΉ) (Q : QuadraticMap R (Mα΅’ i) P) (f : (x : ΞΉ) β†’ Mα΅’ x), (QuadraticMap.Isometry.proj i Q) f = f i
_private.Aesop.Tree.AddRapp.0.Aesop.copyGoals.match_1
Aesop.Tree.AddRapp
(motive : Aesop.ForwardState Γ— Array Aesop.ForwardRuleMatch β†’ Sort u_1) β†’ (__discr : Aesop.ForwardState Γ— Array Aesop.ForwardRuleMatch) β†’ ((forwardState : Aesop.ForwardState) β†’ (ms : Array Aesop.ForwardRuleMatch) β†’ motive (forwardState, ms)) β†’ motive __discr
BitVec.setWidth_eq_append_extractLsb'
Init.Data.BitVec.Lemmas
βˆ€ {v : β„•} {x : BitVec v} {w : β„•}, BitVec.setWidth w x = BitVec.cast β‹― (0#(w - v) ++ BitVec.extractLsb' 0 (min v w) x)
List.Nodup.product
Mathlib.Data.List.Nodup
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {l₁ : List Ξ±} {lβ‚‚ : List Ξ²}, l₁.Nodup β†’ lβ‚‚.Nodup β†’ (l₁ Γ—Λ’ lβ‚‚).Nodup
LinearMap.BilinForm.IsAlt.ortho_comm
Mathlib.LinearAlgebra.BilinearForm.Orthogonal
βˆ€ {R₁ : Type u_3} {M₁ : Type u_4} [inst : CommRing R₁] [inst_1 : AddCommGroup M₁] [inst_2 : Module R₁ M₁] {B₁ : LinearMap.BilinForm R₁ M₁}, B₁.IsAlt β†’ βˆ€ {x y : M₁}, B₁.IsOrtho x y ↔ B₁.IsOrtho y x
BoundedContinuousFunction.toContinuousMapAddHom
Mathlib.Topology.ContinuousMap.Bounded.Basic
(Ξ± : Type u) β†’ (R : Type u_2) β†’ [inst : TopologicalSpace Ξ±] β†’ [inst_1 : PseudoMetricSpace R] β†’ [inst_2 : AddMonoid R] β†’ [inst_3 : BoundedAdd R] β†’ [inst_4 : ContinuousAdd R] β†’ BoundedContinuousFunction Ξ± R β†’+ C(Ξ±, R)
CategoryTheory.BiconeHom.decidableEq._proof_4
Mathlib.CategoryTheory.Limits.Bicones
βˆ€ (J : Type u_1) (j : J), CategoryTheory.Bicone.left = CategoryTheory.Bicone.diagram j β†’ Bool.rec False True (CategoryTheory.Bicone.left.ctorIdx.beq (CategoryTheory.Bicone.diagram j).ctorIdx)
_private.Init.Data.SInt.Lemmas.0.Int64.lt_or_lt_of_ne._simp_1_2
Init.Data.SInt.Lemmas
βˆ€ {x y : Int64}, (x = y) = (x.toInt = y.toInt)
CategoryTheory.ULiftHom.equiv._proof_1
Mathlib.CategoryTheory.Category.ULift
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] (x : C), (CategoryTheory.Functor.id C).obj x = (CategoryTheory.Functor.id C).obj x
_private.Mathlib.CategoryTheory.Limits.IndYoneda.0.CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_Ο€._simp_1_2
Mathlib.CategoryTheory.Limits.IndYoneda
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] (self : CategoryTheory.Functor C D) {X Y Z : C} (f : X ⟢ Y) (g : Y ⟢ Z), CategoryTheory.CategoryStruct.comp (self.map f) (self.map g) = self.map (CategoryTheory.CategoryStruct.comp f g)
_private.Lean.Meta.Tactic.Split.0.Lean.Meta.Split.generalizeMatchPropDiscrs.match_3
Lean.Meta.Tactic.Split
(motive : MProd (Array Lean.Expr) Lean.MVarId β†’ Sort u_1) β†’ (r : MProd (Array Lean.Expr) Lean.MVarId) β†’ ((discrs' : Array Lean.Expr) β†’ (mvarId : Lean.MVarId) β†’ motive ⟨discrs', mvarId⟩) β†’ motive r
_private.Batteries.Tactic.Trans.0.Batteries.Tactic._aux_Batteries_Tactic_Trans___elabRules_Batteries_Tactic_tacticTrans____1.match_1
Batteries.Tactic.Trans
(motive : Option (Lean.Expr Γ— List Lean.MVarId) β†’ Sort u_1) β†’ (t'? : Option (Lean.Expr Γ— List Lean.MVarId)) β†’ ((fst : Lean.Expr) β†’ (gs' : List Lean.MVarId) β†’ motive (some (fst, gs'))) β†’ ((x : Option (Lean.Expr Γ— List Lean.MVarId)) β†’ motive x) β†’ motive t'?
Lean.Parser.ModuleParserState.noConfusionType
Lean.Parser.Module
Sort u β†’ Lean.Parser.ModuleParserState β†’ Lean.Parser.ModuleParserState β†’ Sort u
Submodule.mem_span_set'
Mathlib.LinearAlgebra.Finsupp.LinearCombination
βˆ€ {R : Type u_1} {M : Type u_2} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {m : M} {s : Set M}, m ∈ Submodule.span R s ↔ βˆƒ n f g, βˆ‘ i, f i β€’ ↑(g i) = m
Std.Do.Spec.pure
Std.Do.Triple.SpecLemmas
βˆ€ {m : Type u β†’ Type v} {ps : Std.Do.PostShape} [inst : Monad m] [inst_1 : Std.Do.WPMonad m ps] {Ξ± : Type u} {a : Ξ±} {Q : Std.Do.PostCond Ξ± ps}, ⦃Q.1 a⦄ pure a ⦃Q⦄
MulOpposite.instNatCast
Mathlib.Algebra.Ring.Opposite
{R : Type u_1} β†’ [NatCast R] β†’ NatCast Rᡐᡒᡖ
Lean.Elab.DelabTermInfo.noConfusionType
Lean.Elab.InfoTree.Types
Sort u β†’ Lean.Elab.DelabTermInfo β†’ Lean.Elab.DelabTermInfo β†’ Sort u
_private.Lean.Meta.Tactic.Grind.Arith.Linear.PropagateEq.0.Lean.Meta.Grind.Arith.Linear.updateDiseqs
Lean.Meta.Tactic.Grind.Arith.Linear.PropagateEq
β„€ β†’ Lean.Grind.Linarith.Var β†’ Lean.Meta.Grind.Arith.Linear.EqCnstr β†’ Lean.Grind.Linarith.Var β†’ Lean.Meta.Grind.Arith.Linear.LinearM Unit
_private.Mathlib.Topology.Order.MonotoneContinuity.0.continuousWithinAt_left_of_monotoneOn_of_exists_between.match_1_1
Mathlib.Topology.Order.MonotoneContinuity
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : LinearOrder Ξ²] {f : Ξ± β†’ Ξ²} {s : Set Ξ±} {a : Ξ±} (b : Ξ²α΅’α΅ˆ) (motive : (βˆƒ c ∈ s, f c ∈ Set.Ioo b (f a)) β†’ Prop) (x : βˆƒ c ∈ s, f c ∈ Set.Ioo b (f a)), (βˆ€ (c : Ξ±) (hcs : c ∈ s) (hcb : b < f c) (hca : f c < f a), motive β‹―) β†’ motive x
Batteries.BinomialHeap.Imp.Heap.merge._unary._proof_3
Batteries.Data.BinomialHeap.Basic
βˆ€ {Ξ± : Type u_1} (s₁ : Batteries.BinomialHeap.Imp.Heap Ξ±) (r₁ : β„•) (a₁ : Ξ±) (n₁ : Batteries.BinomialHeap.Imp.HeapNode Ξ±) (t₁ : Batteries.BinomialHeap.Imp.Heap Ξ±) (h : s₁ = Batteries.BinomialHeap.Imp.Heap.cons r₁ a₁ n₁ t₁) (sβ‚‚ : Batteries.BinomialHeap.Imp.Heap Ξ±) (rβ‚‚ : β„•) (aβ‚‚ : Ξ±) (nβ‚‚ : Batteries.BinomialHeap.Imp.HeapNode Ξ±) (tβ‚‚ : Batteries.BinomialHeap.Imp.Heap Ξ±) (h_1 : sβ‚‚ = Batteries.BinomialHeap.Imp.Heap.cons rβ‚‚ aβ‚‚ nβ‚‚ tβ‚‚), (invImage (fun x => PSigma.casesOn x fun a a_1 => a.length + a_1.length) sizeOfWFRel).1 ⟨s₁, tβ‚‚βŸ© ⟨namedPattern s₁ (Batteries.BinomialHeap.Imp.Heap.cons r₁ a₁ n₁ t₁) h, namedPattern sβ‚‚ (Batteries.BinomialHeap.Imp.Heap.cons rβ‚‚ aβ‚‚ nβ‚‚ tβ‚‚) h_1⟩
_private.Mathlib.Algebra.Ring.SumsOfSquares.0.Subsemiring.closure_isSquare._simp_1_1
Mathlib.Algebra.Ring.SumsOfSquares
βˆ€ {T : Type u_2} [inst : CommSemiring T], Subsemiring.closure {x | IsSquare x} = (Submonoid.square T).subsemiringClosure
AffineEquiv.linearHom._proof_2
Mathlib.LinearAlgebra.AffineSpace.AffineEquiv
βˆ€ {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_3} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : Module k V₁] [inst_3 : AddTorsor V₁ P₁] (x x_1 : P₁ ≃ᡃ[k] P₁), (x * x_1).linear = (x * x_1).linear
Mathlib.Tactic.CC.CCNormalizer.rec
Mathlib.Tactic.CC.Datatypes
{motive : Mathlib.Tactic.CC.CCNormalizer β†’ Sort u} β†’ ((normalize : Lean.Expr β†’ Lean.MetaM Lean.Expr) β†’ motive { normalize := normalize }) β†’ (t : Mathlib.Tactic.CC.CCNormalizer) β†’ motive t
Lean.AddErrorMessageContext.casesOn
Lean.Exception
{m : Type β†’ Type} β†’ {motive : Lean.AddErrorMessageContext m β†’ Sort u} β†’ (t : Lean.AddErrorMessageContext m) β†’ ((add : Lean.Syntax β†’ Lean.MessageData β†’ m (Lean.Syntax Γ— Lean.MessageData)) β†’ motive { add := add }) β†’ motive t
Pi.constRingHom._proof_4
Mathlib.Algebra.Ring.Pi
βˆ€ (Ξ± : Type u_1) (Ξ² : Type u_2) [inst : NonAssocSemiring Ξ²] (x y : Ξ²), (↑↑(Pi.ringHom fun x => RingHom.id Ξ²)).toFun (x + y) = (↑↑(Pi.ringHom fun x => RingHom.id Ξ²)).toFun x + (↑↑(Pi.ringHom fun x => RingHom.id Ξ²)).toFun y
InfHom.dual._proof_3
Mathlib.Order.Hom.Lattice
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : Min Ξ±] [inst_1 : Min Ξ²] (x : InfHom Ξ± Ξ²), { toFun := ⇑{ toFun := ⇑x, map_sup' := β‹― }, map_inf' := β‹― } = { toFun := ⇑{ toFun := ⇑x, map_sup' := β‹― }, map_inf' := β‹― }
_private.Mathlib.Data.List.Nodup.0.List.Nodup.ne_singleton_iff._simp_1_2
Mathlib.Data.List.Nodup
βˆ€ {a b c : Prop}, (a ∧ (b ∨ c)) = (a ∧ b ∨ a ∧ c)
CochainComplex.shiftEval_inv_app
Mathlib.Algebra.Homology.HomotopyCategory.Shift
βˆ€ (C : Type u) [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preadditive C] (n i i' : β„€) (hi : n + i = i') (X : CochainComplex C β„€), (CochainComplex.shiftEval C n i i' hi).inv.app X = (HomologicalComplex.XIsoOfEq X β‹―).inv
NonUnitalStarAlgHom.codRestrict._proof_1
Mathlib.Algebra.Star.NonUnitalSubalgebra
βˆ€ {F : Type u_4} {R : Type u_2} {A : Type u_3} {B : Type u_1} [inst : CommSemiring R] [inst_1 : NonUnitalNonAssocSemiring A] [inst_2 : Module R A] [inst_3 : Star A] [inst_4 : NonUnitalNonAssocSemiring B] [inst_5 : Module R B] [inst_6 : Star B] [inst_7 : FunLike F A B] [inst_8 : NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) (S : NonUnitalStarSubalgebra R B) (hf : βˆ€ (x : A), f x ∈ S) (a : A), (NonUnitalAlgHom.codRestrict f S.toNonUnitalSubalgebra hf).toFun (star a) = star ((NonUnitalAlgHom.codRestrict f S.toNonUnitalSubalgebra hf).toFun a)
BitVec.ofNat_sub_ofNat_of_le
Init.Data.BitVec.Lemmas
βˆ€ {w : β„•} (x y : β„•), y < 2 ^ w β†’ y ≀ x β†’ BitVec.ofNat w x - BitVec.ofNat w y = BitVec.ofNat w (x - y)
Algebra.mem_adjoin_of_map_mul
Mathlib.Algebra.Algebra.Subalgebra.Lattice
βˆ€ (R : Type uR) {A : Type uA} {B : Type uB} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Semiring B] [inst_3 : Algebra R A] [inst_4 : Algebra R B] {s : Set A} {x : A} {f : A β†’β‚—[R] B}, (βˆ€ (a₁ aβ‚‚ : A), f (a₁ * aβ‚‚) = f a₁ * f aβ‚‚) β†’ x ∈ Algebra.adjoin R s β†’ f x ∈ Algebra.adjoin R (⇑f '' (s βˆͺ {1}))
ContinuousMap.HomotopyWith.instFunLike
Mathlib.Topology.Homotopy.Basic
{X : Type u} β†’ {Y : Type v} β†’ [inst : TopologicalSpace X] β†’ [inst_1 : TopologicalSpace Y] β†’ {fβ‚€ f₁ : C(X, Y)} β†’ {P : C(X, Y) β†’ Prop} β†’ FunLike (fβ‚€.HomotopyWith f₁ P) (↑unitInterval Γ— X) Y
Matrix.replicateCol_zero
Mathlib.LinearAlgebra.Matrix.RowCol
βˆ€ {m : Type u_2} {Ξ± : Type v} {ΞΉ : Type u_6} [inst : Zero Ξ±], Matrix.replicateCol ΞΉ 0 = 0
_private.Mathlib.GroupTheory.FreeGroup.Orbit.0.FreeGroup.startsWith.disjoint_iff_ne._simp_1_6
Mathlib.GroupTheory.FreeGroup.Orbit
βˆ€ {a b : Prop}, (Β¬(a ∧ b)) = (a β†’ Β¬b)
FirstOrder.Language.Hom.homClass
Mathlib.ModelTheory.Basic
βˆ€ {L : FirstOrder.Language} {M : Type w} {N : Type w'} [inst : L.Structure M] [inst_1 : L.Structure N], L.HomClass (L.Hom M N) M N
MonCat.Colimits.monoidColimitType._proof_1
Mathlib.Algebra.Category.MonCat.Colimits
βˆ€ {J : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} J] (F : CategoryTheory.Functor J MonCat) (x x' : MonCat.Colimits.Prequotient F), x β‰ˆ x' β†’ βˆ€ (y x_1 : MonCat.Colimits.Prequotient F), y β‰ˆ x_1 β†’ x.mul y β‰ˆ x'.mul x_1
Thunk.fn
Init.Core
{Ξ± : Type u} β†’ Thunk Ξ± β†’ Unit β†’ Ξ±
CategoryTheory.CommMon.EquivLaxBraidedFunctorPUnit.counitIso._proof_1
Mathlib.CategoryTheory.Monoidal.CommMon_
βˆ€ (C : Type u_2) [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] (F : CategoryTheory.CommMon C), CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp CategoryTheory.MonObj.one (CategoryTheory.CategoryStruct.id F.X)) (CategoryTheory.CategoryStruct.id F.X) = CategoryTheory.MonObj.one
_private.Mathlib.Combinatorics.Derangements.Finite.0.card_derangements_fin_eq_numDerangements._proof_1_1
Mathlib.Combinatorics.Derangements.Finite
βˆ€ (n : β„•), (βˆ€ m < n + 1 + 1, Fintype.card ↑(derangements (Fin m)) = numDerangements m) β†’ n + 1 < n + 1 + 1
PFunctor.W
Mathlib.Data.PFunctor.Univariate.Basic
PFunctor.{uA, uB} β†’ Type (max uA uB)
_private.Mathlib.Topology.Filter.0.Filter.sInter_nhds._simp_1_1
Mathlib.Topology.Filter
βˆ€ {Ξ± : Type u} {s : Set Ξ±} {f : Filter Ξ±}, (f ≀ Filter.principal s) = (s ∈ f)
CategoryTheory.LocalizerMorphism.LeftResolution.Hom.ext_iff
Mathlib.CategoryTheory.Localization.Resolution
βˆ€ {C₁ : Type u_1} {Cβ‚‚ : Type u_2} {inst : CategoryTheory.Category.{u_5, u_1} C₁} {inst_1 : CategoryTheory.Category.{u_6, u_2} Cβ‚‚} {W₁ : CategoryTheory.MorphismProperty C₁} {Wβ‚‚ : CategoryTheory.MorphismProperty Cβ‚‚} {Ξ¦ : CategoryTheory.LocalizerMorphism W₁ Wβ‚‚} {Xβ‚‚ : Cβ‚‚} {L L' : Ξ¦.LeftResolution Xβ‚‚} {x y : L.Hom L'}, x = y ↔ x.f = y.f
BooleanRing.mul_one_add_self
Mathlib.Algebra.Ring.BooleanRing
βˆ€ {Ξ± : Type u_1} [inst : BooleanRing Ξ±] (a : Ξ±), a * (1 + a) = 0
CategoryTheory.Functor.Monoidal.toUnit_Ξ΅
Mathlib.CategoryTheory.Monoidal.Cartesian.Basic
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.CartesianMonoidalCategory C] {D : Type uβ‚‚} [inst_2 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] [inst_3 : CategoryTheory.CartesianMonoidalCategory D] (F : CategoryTheory.Functor C D) [inst_4 : F.Monoidal] (X : C), CategoryTheory.CategoryStruct.comp (CategoryTheory.SemiCartesianMonoidalCategory.toUnit (F.obj X)) (CategoryTheory.Functor.LaxMonoidal.Ξ΅ F) = F.map (CategoryTheory.SemiCartesianMonoidalCategory.toUnit X)
Filter.rcomap'_sets
Mathlib.Order.Filter.Partial
βˆ€ {Ξ± : Type u} {Ξ² : Type v} (r : SetRel Ξ± Ξ²) (f : Filter Ξ²), (Filter.rcomap' r f).sets = SetRel.image {(s, t) | r.preimage s βŠ† t} f.sets
Set.image2_iInter_subset_right
Mathlib.Data.Set.Lattice.Image
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} {ΞΉ : Sort u_5} (f : Ξ± β†’ Ξ² β†’ Ξ³) (s : Set Ξ±) (t : ΞΉ β†’ Set Ξ²), Set.image2 f s (β‹‚ i, t i) βŠ† β‹‚ i, Set.image2 f s (t i)
Lean.Compiler.LCNF.Probe.filterByUnreach
Lean.Compiler.LCNF.Probing
(Lean.Expr β†’ Lean.Compiler.LCNF.CompilerM Bool) β†’ Lean.Compiler.LCNF.Probe Lean.Compiler.LCNF.Decl Lean.Compiler.LCNF.Decl
AddMonoidHom.mulRight₃._proof_2
Mathlib.Algebra.Ring.Associator
βˆ€ {R : Type u_1} [inst : NonUnitalNonAssocSemiring R] (x y : R), AddMonoidHom.mul.comprβ‚‚ (AddMonoidHom.mulLeft (x + y)) = AddMonoidHom.mul.comprβ‚‚ (AddMonoidHom.mulLeft x) + AddMonoidHom.mul.comprβ‚‚ (AddMonoidHom.mulLeft y)
_private.Mathlib.MeasureTheory.Measure.Typeclasses.Finite.0.wrapped._proof_1._@.Mathlib.MeasureTheory.Measure.Typeclasses.Finite.588747923._hygCtx._hyg.2
Mathlib.MeasureTheory.Measure.Typeclasses.Finite
@definition✝ = @definition✝
SimpleGraph.Walk.getVert_comp_val_eq_get_support
Mathlib.Combinatorics.SimpleGraph.Walks.Traversal
βˆ€ {V : Type u} {G : SimpleGraph V} {u v : V} (p : G.Walk u v), p.getVert ∘ Fin.val = p.support.get
UniformSpace.Completion.isDenseInducing_coe
Mathlib.Topology.UniformSpace.Completion
βˆ€ {Ξ± : Type u_1} [inst : UniformSpace Ξ±], IsDenseInducing UniformSpace.Completion.coe'
instFinitePresentationForall
Mathlib.Algebra.Module.FinitePresentation
βˆ€ {R : Type u_1} [inst : Ring R] {ΞΉ : Type u_2} [Finite ΞΉ], Module.FinitePresentation R (ΞΉ β†’ R)
AffineIsometry.norm_map
Mathlib.Analysis.Normed.Affine.Isometry
βˆ€ {π•œ : Type u_1} {V : Type u_2} {Vβ‚‚ : Type u_5} {P : Type u_10} {Pβ‚‚ : Type u_11} [inst : NormedField π•œ] [inst_1 : SeminormedAddCommGroup V] [inst_2 : NormedSpace π•œ V] [inst_3 : PseudoMetricSpace P] [inst_4 : NormedAddTorsor V P] [inst_5 : SeminormedAddCommGroup Vβ‚‚] [inst_6 : NormedSpace π•œ Vβ‚‚] [inst_7 : PseudoMetricSpace Pβ‚‚] [inst_8 : NormedAddTorsor Vβ‚‚ Pβ‚‚] (self : P →ᡃⁱ[π•œ] Pβ‚‚) (x : V), β€–self.linear xβ€– = β€–xβ€–
Lean.IR.CollectMaps.collectDecl
Lean.Compiler.IR.EmitUtil
Lean.IR.Decl β†’ Lean.IR.CollectMaps.Collector
Finset.instGradeMinOrder_nat
Mathlib.Data.Finset.Grade
{Ξ± : Type u_1} β†’ GradeMinOrder β„• (Finset Ξ±)
ZeroAtInftyContinuousMap.instFunLike
Mathlib.Topology.ContinuousMap.ZeroAtInfty
{Ξ± : Type u} β†’ {Ξ² : Type v} β†’ [inst : TopologicalSpace Ξ±] β†’ [inst_1 : TopologicalSpace Ξ²] β†’ [inst_2 : Zero Ξ²] β†’ FunLike (ZeroAtInftyContinuousMap Ξ± Ξ²) Ξ± Ξ²
Lean.Meta.Grind.Arith.Cutsat.LeCnstrProof.dvdTight.sizeOf_spec
Lean.Meta.Tactic.Grind.Arith.Cutsat.Types
βˆ€ (c₁ : Lean.Meta.Grind.Arith.Cutsat.DvdCnstr) (cβ‚‚ : Lean.Meta.Grind.Arith.Cutsat.LeCnstr), sizeOf (Lean.Meta.Grind.Arith.Cutsat.LeCnstrProof.dvdTight c₁ cβ‚‚) = 1 + sizeOf c₁ + sizeOf cβ‚‚
ValuationRing.commGroupWithZero._proof_9
Mathlib.RingTheory.Valuation.ValuationRing
βˆ€ (A : Type u_1) [inst : CommRing A] (K : Type u_2) [inst_1 : Field K] [inst_2 : Algebra A K] (a b : ValuationRing.ValueGroup A K), a / b = a / b
HOrElse.ctorIdx
Init.Prelude
{Ξ± : Type u} β†’ {Ξ² : Type v} β†’ {Ξ³ : outParam (Type w)} β†’ HOrElse Ξ± Ξ² Ξ³ β†’ β„•
AddCon.comap_eq
Mathlib.GroupTheory.Congruence.Hom
βˆ€ {M : Type u_1} {N : Type u_2} [inst : AddZeroClass M] [inst_1 : AddZeroClass N] {c : AddCon M} {f : N β†’+ M}, AddCon.comap ⇑f β‹― c = AddCon.ker (c.mk'.comp f)
Finmap.insert
Mathlib.Data.Finmap
{Ξ± : Type u} β†’ {Ξ² : Ξ± β†’ Type v} β†’ [DecidableEq Ξ±] β†’ (a : Ξ±) β†’ Ξ² a β†’ Finmap Ξ² β†’ Finmap Ξ²
Std.Internal.List.Const.getValueD_filter
Std.Data.Internal.List.Associative
βˆ€ {Ξ± : Type u} {Ξ² : Type v} [inst : BEq Ξ±] [EquivBEq Ξ±] {fallback : Ξ²} {f : Ξ± β†’ Ξ² β†’ Bool} {l : List ((_ : Ξ±) Γ— Ξ²)}, Std.Internal.List.DistinctKeys l β†’ βˆ€ {k : Ξ±}, Std.Internal.List.getValueD k (List.filter (fun p => f p.fst p.snd) l) fallback = ((Std.Internal.List.getValue? k l).pfilter fun v h => f (Std.Internal.List.getKey k l β‹―) v).getD fallback
Matrix.nondegenerate_iff_det_ne_zero
Mathlib.LinearAlgebra.Matrix.ToLinearEquiv
βˆ€ {n : Type u_1} [inst : Fintype n] {A : Type u_4} [inst_1 : DecidableEq n] [inst_2 : CommRing A] [IsDomain A] {M : Matrix n n A}, M.Nondegenerate ↔ M.det β‰  0
AlgebraicGeometry.StructureSheaf.const_mul
Mathlib.AlgebraicGeometry.StructureSheaf
βˆ€ (R : Type u) [inst : CommRing R] (f₁ fβ‚‚ g₁ gβ‚‚ : R) (U : TopologicalSpace.Opens ↑(AlgebraicGeometry.PrimeSpectrum.Top R)) (hu₁ : βˆ€ x ∈ U, g₁ ∈ x.asIdeal.primeCompl) (huβ‚‚ : βˆ€ x ∈ U, gβ‚‚ ∈ x.asIdeal.primeCompl), AlgebraicGeometry.StructureSheaf.const R f₁ g₁ U hu₁ * AlgebraicGeometry.StructureSheaf.const R fβ‚‚ gβ‚‚ U huβ‚‚ = AlgebraicGeometry.StructureSheaf.const R (f₁ * fβ‚‚) (g₁ * gβ‚‚) U β‹―
IsCoercive.continuousLinearEquivOfBilin
Mathlib.Analysis.InnerProductSpace.LaxMilgram
{V : Type u} β†’ [inst : NormedAddCommGroup V] β†’ [inst_1 : InnerProductSpace ℝ V] β†’ [CompleteSpace V] β†’ {B : V β†’L[ℝ] V β†’L[ℝ] ℝ} β†’ IsCoercive B β†’ V ≃L[ℝ] V
HasSubset.Subset.trans
Mathlib.Order.RelClasses
βˆ€ {Ξ± : Type u} [inst : HasSubset Ξ±] [IsTrans Ξ± fun x1 x2 => x1 βŠ† x2] {a b c : Ξ±}, a βŠ† b β†’ b βŠ† c β†’ a βŠ† c
Units.mul_right_inj
Mathlib.Algebra.Group.Units.Basic
βˆ€ {Ξ± : Type u} [inst : Monoid Ξ±] (a : Ξ±Λ£) {b c : Ξ±}, ↑a * b = ↑a * c ↔ b = c
Derivation.liftOfSurjective.congr_simp
Mathlib.RingTheory.Derivation.Basic
βˆ€ {R : Type u_1} {A : Type u_2} {M : Type u_3} [inst : CommSemiring R] [inst_1 : CommRing A] [inst_2 : CommRing M] [inst_3 : Algebra R A] [inst_4 : Algebra R M] {F : Type u_4} [inst_5 : FunLike F A M] [inst_6 : AlgHomClass F R A M] {f f_1 : F} (e_f : f = f_1) (hf : Function.Surjective ⇑f) ⦃d d_1 : Derivation R A A⦄ (e_d : d = d_1) (hd : βˆ€ (x : A), f x = 0 β†’ f (d x) = 0), Derivation.liftOfSurjective hf hd = Derivation.liftOfSurjective β‹― β‹―
RingTheory.LinearMap._aux_Mathlib_Algebra_Algebra_Bilinear___macroRules_RingTheory_LinearMap_termΞΌ_1
Mathlib.Algebra.Algebra.Bilinear
Lean.Macro
ProbabilityTheory.Kernel.borelMarkovFromReal.congr_simp
Mathlib.Probability.Kernel.Disintegration.StandardBorel
βˆ€ {Ξ± : Type u_1} {mΞ± : MeasurableSpace Ξ±} (Ξ© : Type u_5) [inst : Nonempty Ξ©] [inst_1 : MeasurableSpace Ξ©] [inst_2 : StandardBorelSpace Ξ©] (Ξ· Ξ·_1 : ProbabilityTheory.Kernel Ξ± ℝ), Ξ· = Ξ·_1 β†’ ProbabilityTheory.Kernel.borelMarkovFromReal Ξ© Ξ· = ProbabilityTheory.Kernel.borelMarkovFromReal Ξ© Ξ·_1
Equiv.pemptyArrowEquivPUnit
Mathlib.Logic.Equiv.Defs
(Ξ± : Sort u_1) β†’ (PEmpty.{u_2} β†’ Ξ±) ≃ PUnit.{u}
CategoryTheory.Cat.FreeRefl.lift
Mathlib.CategoryTheory.Category.ReflQuiv
{V : Type u_1} β†’ [inst : CategoryTheory.ReflQuiver V] β†’ {D : Type u_2} β†’ [inst_1 : CategoryTheory.Category.{u_4, u_2} D] β†’ V β₯€rq D β†’ CategoryTheory.Functor (CategoryTheory.Cat.FreeRefl V) D
PerfectClosure.instNeg
Mathlib.FieldTheory.PerfectClosure
(K : Type u) β†’ [inst : CommRing K] β†’ (p : β„•) β†’ [inst_1 : Fact (Nat.Prime p)] β†’ [inst_2 : CharP K p] β†’ Neg (PerfectClosure K p)
CategoryTheory.LocalizerMorphism.RightResolution._sizeOf_1
Mathlib.CategoryTheory.Localization.Resolution
{C₁ : Type u_1} β†’ {Cβ‚‚ : Type u_2} β†’ {inst : CategoryTheory.Category.{u_5, u_1} C₁} β†’ {inst_1 : CategoryTheory.Category.{u_6, u_2} Cβ‚‚} β†’ {W₁ : CategoryTheory.MorphismProperty C₁} β†’ {Wβ‚‚ : CategoryTheory.MorphismProperty Cβ‚‚} β†’ {Ξ¦ : CategoryTheory.LocalizerMorphism W₁ Wβ‚‚} β†’ {Xβ‚‚ : Cβ‚‚} β†’ [SizeOf C₁] β†’ [SizeOf Cβ‚‚] β†’ [⦃X Y : C₁⦄ β†’ (x : X ⟢ Y) β†’ SizeOf (W₁ x)] β†’ [⦃X Y : C₂⦄ β†’ (x : X ⟢ Y) β†’ SizeOf (Wβ‚‚ x)] β†’ Ξ¦.RightResolution Xβ‚‚ β†’ β„•
AddSubsemigroup.coe_op
Mathlib.Algebra.Group.Subsemigroup.MulOpposite
βˆ€ {M : Type u_2} [inst : Add M] (x : AddSubsemigroup M), ↑x.op = AddOpposite.unop ⁻¹' ↑x
Polynomial.mapRingHom_comp_C
Mathlib.Algebra.Polynomial.Eval.Defs
βˆ€ {R : Type u_1} {S : Type u_2} [inst : Semiring R] [inst_1 : Semiring S] (f : R β†’+* S), (Polynomial.mapRingHom f).comp Polynomial.C = Polynomial.C.comp f
CategoryTheory.instBicategoryMonoidalSingleObj._proof_6
Mathlib.CategoryTheory.Bicategory.SingleObj
βˆ€ (C : Type u_2) [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.MonoidalCategory C] {a b c : CategoryTheory.MonoidalSingleObj C} {f g h : C} (Ξ· : f ⟢ g) (ΞΈ : g ⟢ h) (i : C), CategoryTheory.MonoidalCategoryStruct.whiskerRight (CategoryTheory.CategoryStruct.comp Ξ· ΞΈ) i = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight Ξ· i) (CategoryTheory.MonoidalCategoryStruct.whiskerRight ΞΈ i)
_private.Init.Data.List.Basic.0.List.getLastD.match_1.eq_1
Init.Data.List.Basic
βˆ€ {Ξ± : Type u_1} (motive : List Ξ± β†’ Ξ± β†’ Sort u_2) (aβ‚€ : Ξ±) (h_1 : (aβ‚€ : Ξ±) β†’ motive [] aβ‚€) (h_2 : (a : Ξ±) β†’ (as : List Ξ±) β†’ (x : Ξ±) β†’ motive (a :: as) x), (match [], aβ‚€ with | [], aβ‚€ => h_1 aβ‚€ | a :: as, x => h_2 a as x) = h_1 aβ‚€
Aesop.Script.Tactic.sTactic?
Aesop.Script.Tactic
Aesop.Script.Tactic β†’ Option Aesop.Script.STactic
_private.Lean.Parser.Term.Doc.0.Lean.Parser.Term.Doc.recommendedSpellingByNameExt.match_1
Lean.Parser.Term.Doc
(motive : Lean.Parser.Term.Doc.RecommendedSpelling Γ— Array Lean.Name β†’ Sort u_1) β†’ (x : Lean.Parser.Term.Doc.RecommendedSpelling Γ— Array Lean.Name) β†’ ((rec : Lean.Parser.Term.Doc.RecommendedSpelling) β†’ (xs : Array Lean.Name) β†’ motive (rec, xs)) β†’ motive x
Real.convexOn_log_Gamma
Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup
ConvexOn ℝ (Set.Ioi 0) (Real.log ∘ Real.Gamma)
Array.beq_eq_decide
Init.Data.Array.DecidableEq
βˆ€ {Ξ± : Type u_1} [inst : BEq Ξ±] (xs ys : Array Ξ±), (xs == ys) = if h : xs.size = ys.size then decide (βˆ€ (i : β„•) (h' : i < xs.size), (xs[i] == ys[i]) = true) else false
CategoryTheory.Localization.Monoidal.functorCoreMonoidalOfComp
Mathlib.CategoryTheory.Localization.Monoidal.Functor
{C : Type u_1} β†’ {D : Type u_2} β†’ {E : Type u_3} β†’ [inst : CategoryTheory.Category.{u_4, u_1} C] β†’ [inst_1 : CategoryTheory.Category.{u_5, u_2} D] β†’ [inst_2 : CategoryTheory.Category.{u_6, u_3} E] β†’ [inst_3 : CategoryTheory.MonoidalCategory C] β†’ [inst_4 : CategoryTheory.MonoidalCategory D] β†’ [inst_5 : CategoryTheory.MonoidalCategory E] β†’ (L : CategoryTheory.Functor C D) β†’ (W : CategoryTheory.MorphismProperty C) β†’ [L.IsLocalization W] β†’ [L.Monoidal] β†’ (F : CategoryTheory.Functor D E) β†’ (G : CategoryTheory.Functor C E) β†’ [G.Monoidal] β†’ [W.ContainsIdentities] β†’ [CategoryTheory.Localization.Lifting L W G F] β†’ F.CoreMonoidal
Subgroup.Commensurable.eq_1
Mathlib.GroupTheory.Commensurable
βˆ€ {G : Type u_1} [inst : Group G] (H K : Subgroup G), H.Commensurable K = (H.relIndex K β‰  0 ∧ K.relIndex H β‰  0)
Unitization.instNonAssocRing._proof_9
Mathlib.Algebra.Algebra.Unitization
βˆ€ {R : Type u_1} {A : Type u_2} [inst : CommRing R] [inst_1 : NonUnitalNonAssocRing A] [inst_2 : Module R A] (n : β„•), (↑n).castDef = (↑n).castDef
LinearIsometry.strictConvexSpace_range
Mathlib.Analysis.Convex.LinearIsometry
βˆ€ {π•œ : Type u_1} {E : Type u_2} {F : Type u_3} [inst : NormedField π•œ] [inst_1 : PartialOrder π•œ] [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace π•œ E] [inst_4 : NormedAddCommGroup F] [inst_5 : NormedSpace π•œ F] [StrictConvexSpace π•œ E] (e : E β†’β‚—α΅’[π•œ] F), StrictConvexSpace π•œ β†₯(LinearMap.range e)
monotoneOn_of_le_add_one
Mathlib.Algebra.Order.SuccPred
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : PartialOrder Ξ±] [inst_1 : Preorder Ξ²] [inst_2 : Add Ξ±] [inst_3 : One Ξ±] [inst_4 : SuccAddOrder Ξ±] [IsSuccArchimedean Ξ±] {s : Set Ξ±} {f : Ξ± β†’ Ξ²}, s.OrdConnected β†’ (βˆ€ (a : Ξ±), Β¬IsMax a β†’ a ∈ s β†’ a + 1 ∈ s β†’ f a ≀ f (a + 1)) β†’ MonotoneOn f s
ContinuousAlternatingMap.ofSubsingleton_toAlternatingMap
Mathlib.Topology.Algebra.Module.Alternating.Basic
βˆ€ (R : Type u_1) (M : Type u_2) (N : Type u_4) {ΞΉ : Type u_6} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] [inst_3 : TopologicalSpace M] [inst_4 : AddCommMonoid N] [inst_5 : Module R N] [inst_6 : TopologicalSpace N] [inst_7 : Subsingleton ΞΉ] (i : ΞΉ) (f : M β†’L[R] N), ((ContinuousAlternatingMap.ofSubsingleton R M N i) f).toAlternatingMap = (AlternatingMap.ofSubsingleton R M N i) ↑f
Filter.bliminf_or_le_inf_aux_right._simp_1
Mathlib.Order.LiminfLimsup
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : CompleteLattice Ξ±] {f : Filter Ξ²} {p q : Ξ² β†’ Prop} {u : Ξ² β†’ Ξ±}, ((Filter.bliminf u f fun x => p x ∨ q x) ≀ Filter.bliminf u f q) = True
definition._@.Mathlib.Analysis.InnerProductSpace.PiL2.1554134833._hygCtx._hyg.2
Mathlib.Analysis.InnerProductSpace.PiL2
{ΞΉ : Type u_1} β†’ {π•œ : Type u_3} β†’ [inst : RCLike π•œ] β†’ {E : Type u_4} β†’ [inst_1 : NormedAddCommGroup E] β†’ [inst_2 : InnerProductSpace π•œ E] β†’ [Fintype ΞΉ] β†’ [FiniteDimensional π•œ E] β†’ {n : β„•} β†’ Module.finrank π•œ E = n β†’ [inst_5 : DecidableEq ΞΉ] β†’ {V : ΞΉ β†’ Submodule π•œ E} β†’ DirectSum.IsInternal V β†’ (OrthogonalFamily π•œ (fun i => β†₯(V i)) fun i => (V i).subtypeβ‚—α΅’) β†’ (i : ΞΉ) Γ— Fin (Module.finrank π•œ β†₯(V i)) ≃ Fin n
_private.Lean.Meta.Tactic.Grind.Arith.Cutsat.Proof.0.Lean.Meta.Grind.Arith.Cutsat.EqCnstr.collectDecVars.match_1
Lean.Meta.Tactic.Grind.Arith.Cutsat.Proof
(motive : Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof β†’ Sort u_1) β†’ (x : Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof) β†’ ((a zero : Lean.Expr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.core0 a zero)) β†’ ((a b : Lean.Expr) β†’ (p₁ pβ‚‚ : Int.Linear.Poly) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.core a b p₁ pβ‚‚)) β†’ ((e : Lean.Expr) β†’ (p : Int.Linear.Poly) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.defn e p)) β†’ ((h : Lean.Expr) β†’ (x : Int.Linear.Var) β†’ (e' : Int.Linear.Expr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.defnNat h x e')) β†’ ((e : Lean.Expr) β†’ (p : Int.Linear.Poly) β†’ (re : Lean.Meta.Grind.Arith.CommRing.RingExpr) β†’ (rp : Lean.Grind.CommRing.Poly) β†’ (p' : Int.Linear.Poly) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.defnCommRing e p re rp p')) β†’ ((h : Lean.Expr) β†’ (x : Int.Linear.Var) β†’ (e' : Int.Linear.Expr) β†’ (p : Int.Linear.Poly) β†’ (re : Lean.Meta.Grind.Arith.CommRing.RingExpr) β†’ (rp : Lean.Grind.CommRing.Poly) β†’ (p' : Int.Linear.Poly) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.defnNatCommRing h x e' p re rp p')) β†’ ((a b toIntThm : Lean.Expr) β†’ (lhs rhs : Int.Linear.Expr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.coreToInt a b toIntThm lhs rhs)) β†’ ((c : Lean.Meta.Grind.Arith.Cutsat.EqCnstr) β†’ (e : Lean.Meta.Grind.Arith.CommRing.RingExpr) β†’ (p : Lean.Grind.CommRing.Poly) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.commRingNorm c e p)) β†’ ((c : Lean.Meta.Grind.Arith.Cutsat.EqCnstr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.reorder c)) β†’ ((c : Lean.Meta.Grind.Arith.Cutsat.EqCnstr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.norm c)) β†’ ((c : Lean.Meta.Grind.Arith.Cutsat.EqCnstr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.divCoeffs c)) β†’ ((k : β„€) β†’ (y? : Option Int.Linear.Var) β†’ (c : Lean.Meta.Grind.Arith.Cutsat.EqCnstr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.div k y? c)) β†’ ((k : β„€) β†’ (y? : Option Int.Linear.Var) β†’ (c : Lean.Meta.Grind.Arith.Cutsat.EqCnstr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.mod k y? c)) β†’ ((x : Int.Linear.Var) β†’ (c₁ cβ‚‚ : Lean.Meta.Grind.Arith.Cutsat.EqCnstr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.subst x c₁ cβ‚‚)) β†’ ((c₁ cβ‚‚ : Lean.Meta.Grind.Arith.Cutsat.LeCnstr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.ofLeGe c₁ cβ‚‚)) β†’ ((a? : Option Lean.Expr) β†’ (cs : Array (Lean.Expr Γ— β„€ Γ— Lean.Meta.Grind.Arith.Cutsat.EqCnstr)) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.mul a? cs)) β†’ ((ka : β„€) β†’ (ca? : Option Lean.Meta.Grind.Arith.Cutsat.EqCnstr) β†’ (kb : β„•) β†’ (cb? : Option Lean.Meta.Grind.Arith.Cutsat.EqCnstr) β†’ motive (Lean.Meta.Grind.Arith.Cutsat.EqCnstrProof.pow ka ca? kb cb?)) β†’ motive x
ProofWidgets.RpcEncodablePacket.Β«_@Β».ProofWidgets.Component.Basic.2277670097._hygCtx._hyg.1.noConfusion
ProofWidgets.Component.Basic
{P : Sort u} β†’ {x1 x2 : ProofWidgets.RpcEncodablePacket✝} β†’ x1 = x2 β†’ ProofWidgets.RpcEncodablePacket.Β«_@Β».ProofWidgets.Component.Basic.2277670097._hygCtx._hyg.1.noConfusionType P x1 x2
Lean.guardMsgsPositions
Init.Notation
Lean.ParserDescr