name
string
module
string
type
string
subset_tangentConeAt_prod_left
Mathlib.Analysis.Calculus.TangentCone.Prod
βˆ€ {π•œ : Type u_1} {E : Type u_2} {F : Type u_3} [inst : NontriviallyNormedField π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {x : E} {s : Set E} {y : F} {t : Set F}, y ∈ closure t β†’ ⇑(LinearMap.inl π•œ E F) '' tangentConeAt π•œ s x βŠ† tangentConeAt π•œ (s Γ—Λ’ t) (x, y)
AlgebraicGeometry.Scheme.kerAdjunction_counit_app
Mathlib.AlgebraicGeometry.IdealSheaf.Subscheme
βˆ€ (Y : AlgebraicGeometry.Scheme) (f : (CategoryTheory.Over Y)α΅’α΅–), Y.kerAdjunction.counit.app f = (CategoryTheory.Over.homMk (AlgebraicGeometry.Scheme.Hom.toImage (Opposite.unop f).hom) β‹―).op
ZFSet.card_empty
Mathlib.SetTheory.ZFC.Cardinal
βˆ….card = 0
Subring.mem_toSubsemiring._simp_1
Mathlib.Algebra.Ring.Subring.Defs
βˆ€ {R : Type u} [inst : Ring R] {s : Subring R} {x : R}, (x ∈ s.toSubsemiring) = (x ∈ s)
Lean.Syntax.ident.inj
Init.Core
βˆ€ {info : Lean.SourceInfo} {rawVal : Substring.Raw} {val : Lean.Name} {preresolved : List Lean.Syntax.Preresolved} {info_1 : Lean.SourceInfo} {rawVal_1 : Substring.Raw} {val_1 : Lean.Name} {preresolved_1 : List Lean.Syntax.Preresolved}, Lean.Syntax.ident info rawVal val preresolved = Lean.Syntax.ident info_1 rawVal_1 val_1 preresolved_1 β†’ info = info_1 ∧ rawVal = rawVal_1 ∧ val = val_1 ∧ preresolved = preresolved_1
CliffordAlgebra.reverse_mem_evenOdd_iff
Mathlib.LinearAlgebra.CliffordAlgebra.Conjugation
βˆ€ {R : Type u_1} [inst : CommRing R] {M : Type u_2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] (Q : QuadraticForm R M) {x : CliffordAlgebra Q} {n : ZMod 2}, CliffordAlgebra.reverse x ∈ CliffordAlgebra.evenOdd Q n ↔ x ∈ CliffordAlgebra.evenOdd Q n
_private.Lean.Meta.LetToHave.0.Lean.Meta.LetToHave.State.rec
Lean.Meta.LetToHave
{motive : Lean.Meta.LetToHave.State✝ β†’ Sort u} β†’ ((count : β„•) β†’ (results : Std.HashMap Lean.ExprStructEq Lean.Meta.LetToHave.Result✝) β†’ motive { count := count, results := results }) β†’ (t : Lean.Meta.LetToHave.State✝¹) β†’ motive t
_private.Mathlib.Order.Filter.Bases.Finite.0.Filter.hasBasis_generate._simp_1_1
Mathlib.Order.Filter.Bases.Finite
βˆ€ {Ξ± : Type u} {s : Set (Set Ξ±)} {U : Set Ξ±}, (U ∈ Filter.generate s) = βˆƒ t βŠ† s, t.Finite ∧ β‹‚β‚€ t βŠ† U
HahnSeries.orderTop_embDomain
Mathlib.RingTheory.HahnSeries.Basic
βˆ€ {Ξ“' : Type u_2} {R : Type u_3} [inst : Zero R] [inst_1 : PartialOrder Ξ“'] {Ξ“ : Type u_5} [inst_2 : LinearOrder Ξ“] {f : Ξ“ β†ͺo Ξ“'} {x : HahnSeries Ξ“ R}, (HahnSeries.embDomain f x).orderTop = WithTop.map (⇑f) x.orderTop
orthogonalFamily_iff_pairwise
Mathlib.Analysis.InnerProductSpace.Orthogonal
βˆ€ {π•œ : Type u_1} {E : Type u_2} [inst : RCLike π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : InnerProductSpace π•œ E] {ΞΉ : Type u_4} {V : ΞΉ β†’ Submodule π•œ E}, (OrthogonalFamily π•œ (fun i => β†₯(V i)) fun i => (V i).subtypeβ‚—α΅’) ↔ Pairwise (Function.onFun (fun x1 x2 => x1 βŸ‚ x2) V)
ProofWidgets.MakeEditLinkProps.ctorIdx
ProofWidgets.Component.MakeEditLink
ProofWidgets.MakeEditLinkProps β†’ β„•
Int.zsmul_eq_mul
Mathlib.Algebra.Group.Int.Defs
βˆ€ (n a : β„€), n β€’ a = n * a
_private.Lean.Elab.PreDefinition.Structural.FindRecArg.0.Lean.Elab.Structural.nonIndicesFirst.match_1
Lean.Elab.PreDefinition.Structural.FindRecArg
(motive : Array Lean.Elab.Structural.RecArgInfo Γ— Array Lean.Elab.Structural.RecArgInfo β†’ Sort u_1) β†’ (x : Array Lean.Elab.Structural.RecArgInfo Γ— Array Lean.Elab.Structural.RecArgInfo) β†’ ((indices nonIndices : Array Lean.Elab.Structural.RecArgInfo) β†’ motive (indices, nonIndices)) β†’ motive x
MeromorphicOn.neg
Mathlib.Analysis.Meromorphic.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {f : π•œ β†’ E} {U : Set π•œ}, MeromorphicOn f U β†’ MeromorphicOn (-f) U
List.nil_lt_cons
Init.Data.List.Lex
βˆ€ {Ξ± : Type u_1} [inst : LT Ξ±] (a : Ξ±) (l : List Ξ±), [] < a :: l
_private.Init.Grind.Ring.CommSolver.0.Lean.Grind.CommRing.instBEqMon.beq.match_1.eq_1
Init.Grind.Ring.CommSolver
βˆ€ (motive : Lean.Grind.CommRing.Mon β†’ Lean.Grind.CommRing.Mon β†’ Sort u_1) (h_1 : Unit β†’ motive Lean.Grind.CommRing.Mon.unit Lean.Grind.CommRing.Mon.unit) (h_2 : (a : Lean.Grind.CommRing.Power) β†’ (a_1 : Lean.Grind.CommRing.Mon) β†’ (b : Lean.Grind.CommRing.Power) β†’ (b_1 : Lean.Grind.CommRing.Mon) β†’ motive (Lean.Grind.CommRing.Mon.mult a a_1) (Lean.Grind.CommRing.Mon.mult b b_1)) (h_3 : (x x_1 : Lean.Grind.CommRing.Mon) β†’ motive x x_1), (match Lean.Grind.CommRing.Mon.unit, Lean.Grind.CommRing.Mon.unit with | Lean.Grind.CommRing.Mon.unit, Lean.Grind.CommRing.Mon.unit => h_1 () | Lean.Grind.CommRing.Mon.mult a a_1, Lean.Grind.CommRing.Mon.mult b b_1 => h_2 a a_1 b b_1 | x, x_1 => h_3 x x_1) = h_1 ()
enorm_mul_le'
Mathlib.Analysis.Normed.Group.Basic
βˆ€ {E : Type u_8} [inst : TopologicalSpace E] [inst_1 : ESeminormedMonoid E] (a b : E), β€–a * bβ€–β‚‘ ≀ β€–aβ€–β‚‘ + β€–bβ€–β‚‘
CategoryTheory.Bicategory.postcomposing._proof_2
Mathlib.CategoryTheory.Bicategory.Basic
βˆ€ {B : Type u_2} [inst : CategoryTheory.Bicategory B] (a b c : B) (X : b ⟢ c) ⦃X_1 Y_1 : a ⟢ b⦄ (f : X_1 ⟢ Y_1), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight f X) (CategoryTheory.Bicategory.whiskerLeft Y_1 (CategoryTheory.CategoryStruct.id X)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft X_1 (CategoryTheory.CategoryStruct.id X)) (CategoryTheory.Bicategory.whiskerRight f X)
Finset.Ioi_nonempty
Mathlib.Order.Interval.Finset.Basic
βˆ€ {Ξ± : Type u_2} {a : Ξ±} [inst : Preorder Ξ±] [inst_1 : LocallyFiniteOrderTop Ξ±], (Finset.Ioi a).Nonempty ↔ Β¬IsMax a
ContinuousStar.rec
Mathlib.Topology.Algebra.Star
{R : Type u_1} β†’ [inst : TopologicalSpace R] β†’ [inst_1 : Star R] β†’ {motive : ContinuousStar R β†’ Sort u} β†’ ((continuous_star : Continuous star) β†’ motive β‹―) β†’ (t : ContinuousStar R) β†’ motive t
ValuativeRel.valueSetoid._proof_1
Mathlib.RingTheory.Valuation.ValuativeRel.Basic
βˆ€ (R : Type u_1) [inst : CommRing R] [inst_1 : ValuativeRel R], Equivalence fun x x_1 => match x with | (x, s) => match x_1 with | (y, t) => x * ↑t ≀α΅₯ y * ↑s ∧ y * ↑s ≀α΅₯ x * ↑t
Std.LawfulOrderLT
Init.Data.Order.Classes
(Ξ± : Type u) β†’ [LT Ξ±] β†’ [LE Ξ±] β†’ Prop
LinearGrowth.tendsto_atTop_of_linearGrowthInf_natCast_pos
Mathlib.Analysis.Asymptotics.LinearGrowth
βˆ€ {v : β„• β†’ β„•}, (LinearGrowth.linearGrowthInf fun n => ↑(v n)) β‰  0 β†’ Filter.Tendsto v Filter.atTop Filter.atTop
IsTotallySeparated.isTotallyDisconnected
Mathlib.Topology.Connected.TotallyDisconnected
βˆ€ {Ξ± : Type u} [inst : TopologicalSpace Ξ±] {s : Set Ξ±}, IsTotallySeparated s β†’ IsTotallyDisconnected s
Int.reduceBdiv._regBuiltin.Int.reduceBdiv.declare_1._@.Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int.1571464712._hygCtx._hyg.16
Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int
IO Unit
LinearMap.smulRight_zero
Mathlib.Algebra.Module.LinearMap.End
βˆ€ {R : Type u_1} {S : Type u_3} {M : Type u_4} {M₁ : Type u_5} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : AddCommMonoid M₁] [inst_3 : Module R M] [inst_4 : Module R M₁] [inst_5 : Semiring S] [inst_6 : Module R S] [inst_7 : Module S M] [inst_8 : IsScalarTower R S M] (f : M₁ β†’β‚—[R] S), f.smulRight 0 = 0
ApplicativeTransformation.mk.sizeOf_spec
Mathlib.Control.Traversable.Basic
βˆ€ {F : Type u β†’ Type v} [inst : Applicative F] {G : Type u β†’ Type w} [inst_1 : Applicative G] [inst_2 : (a : Type u) β†’ SizeOf (F a)] [inst_3 : (a : Type u) β†’ SizeOf (G a)] (app : (Ξ± : Type u) β†’ F Ξ± β†’ G Ξ±) (preserves_pure' : βˆ€ {Ξ± : Type u} (x : Ξ±), app Ξ± (pure x) = pure x) (preserves_seq' : βˆ€ {Ξ± Ξ² : Type u} (x : F (Ξ± β†’ Ξ²)) (y : F Ξ±), app Ξ² (x <*> y) = app (Ξ± β†’ Ξ²) x <*> app Ξ± y), sizeOf { app := app, preserves_pure' := preserves_pure', preserves_seq' := preserves_seq' } = 1
ENNReal.eq_of_forall_nnreal_iff
Mathlib.Data.ENNReal.Inv
βˆ€ {x y : ENNReal}, (βˆ€ (r : NNReal), ↑r ≀ x ↔ ↑r ≀ y) β†’ x = y
DirectLimit.instDivisionSemiring._proof_15
Mathlib.Algebra.Colimit.DirectLimit
βˆ€ {ΞΉ : Type u_1} [inst : Preorder ΞΉ] {G : ΞΉ β†’ Type u_2} {T : ⦃i j : ι⦄ β†’ i ≀ j β†’ Type u_3} {f : (x x_1 : ΞΉ) β†’ (h : x ≀ x_1) β†’ T h} [inst_1 : (i j : ΞΉ) β†’ (h : i ≀ j) β†’ FunLike (T h) (G i) (G j)] [inst_2 : DirectedSystem G fun x1 x2 x3 => ⇑(f x1 x2 x3)] [inst_3 : IsDirectedOrder ΞΉ] [inst_4 : Nonempty ΞΉ] [inst_5 : (i : ΞΉ) β†’ DivisionSemiring (G i)] [inst_6 : βˆ€ (i j : ΞΉ) (h : i ≀ j), RingHomClass (T h) (G i) (G j)] (n : β„•), ↑(n + 1) = ↑n + 1
toLexMulEquiv.eq_1
Mathlib.Algebra.Order.Group.Equiv
βˆ€ (Ξ± : Type u_1) [inst : Mul Ξ±], toLexMulEquiv Ξ± = { toEquiv := toLex, map_mul' := β‹― }
ContDiffAt.snd'
Mathlib.Analysis.Calculus.ContDiff.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type uE} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type uF} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {G : Type uG} [inst_5 : NormedAddCommGroup G] [inst_6 : NormedSpace π•œ G] {n : WithTop β„•βˆž} {f : F β†’ G} {x : E} {y : F}, ContDiffAt π•œ n f y β†’ ContDiffAt π•œ n (fun x => f x.2) (x, y)
_private.Std.Data.DTreeMap.Internal.Model.0.Std.DTreeMap.Internal.Impl.updateCell._proof_19
Std.Data.DTreeMap.Internal.Model
βˆ€ {Ξ± : Type u_1} {Ξ² : Ξ± β†’ Type u_2} (k' : Ξ±) (v' : Ξ² k'), Std.DTreeMap.Internal.Impl.leaf.size - 1 ≀ (Std.DTreeMap.Internal.Impl.inner 1 k' v' Std.DTreeMap.Internal.Impl.leaf Std.DTreeMap.Internal.Impl.leaf).size
lp.inftyNormedRing.congr_simp
Mathlib.Analysis.Normed.Lp.lpSpace
βˆ€ {I : Type u_5} {B : I β†’ Type u_6} [inst : (i : I) β†’ NormedRing (B i)] [inst_1 : βˆ€ (i : I), NormOneClass (B i)], lp.inftyNormedRing = lp.inftyNormedRing
IsSelfAdjoint.toReal_spectralRadius_eq_norm
Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Order
βˆ€ {A : Type u_1} [inst : CStarAlgebra A] {a : A}, IsSelfAdjoint a β†’ (spectralRadius ℝ a).toReal = β€–aβ€–
AlgebraicGeometry.Scheme.JointlySurjective.recOn
Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{K : CategoryTheory.Precoverage AlgebraicGeometry.Scheme} β†’ {motive : AlgebraicGeometry.Scheme.JointlySurjective K β†’ Sort u_1} β†’ (t : AlgebraicGeometry.Scheme.JointlySurjective K) β†’ ((exists_eq : βˆ€ {X : AlgebraicGeometry.Scheme}, βˆ€ S ∈ K.coverings X, βˆ€ (x : β†₯X), βˆƒ Y g, S g ∧ x ∈ Set.range ⇑(CategoryTheory.ConcreteCategory.hom g.base)) β†’ motive β‹―) β†’ motive t
contMDiffWithinAt_iff_of_mem_source'
Mathlib.Geometry.Manifold.ContMDiff.Defs
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {H : Type u_3} [inst_3 : TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] {E' : Type u_5} [inst_6 : NormedAddCommGroup E'] [inst_7 : NormedSpace π•œ E'] {H' : Type u_6} [inst_8 : TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M' : Type u_7} [inst_9 : TopologicalSpace M'] [inst_10 : ChartedSpace H' M'] {f : M β†’ M'} {s : Set M} {x : M} {n : WithTop β„•βˆž} [IsManifold I n M] [IsManifold I' n M'] {x' : M} {y : M'}, x' ∈ (chartAt H x).source β†’ f x' ∈ (chartAt H' y).source β†’ (ContMDiffWithinAt I I' n f s x' ↔ ContinuousWithinAt f s x' ∧ ContDiffWithinAt π•œ n (↑(extChartAt I' y) ∘ f ∘ ↑(extChartAt I x).symm) ((extChartAt I x).target ∩ ↑(extChartAt I x).symm ⁻¹' (s ∩ f ⁻¹' (extChartAt I' y).source)) (↑(extChartAt I x) x'))
_private.Mathlib.Topology.Algebra.InfiniteSum.ConditionalInt.0.SummationFilter.symmetricIcc_eq_symmetricIoo_int._proof_1_13
Mathlib.Topology.Algebra.InfiniteSum.ConditionalInt
βˆ€ (s : Set (Finset β„€)), (βˆƒ a, βˆ€ (b : β„•), a ≀ b β†’ Finset.Icc (-↑b) ↑b ∈ s) β†’ βˆ€ (a : β„•), (βˆ€ (b : β„•), a ≀ b β†’ Finset.Icc (-↑b) ↑b ∈ s) β†’ βˆ€ (b : β„•), a + 1 ≀ b β†’ βˆ€ (a : β„€), -↑b < a ∧ a < ↑b ↔ -↑(b - 1) ≀ a ∧ a ≀ ↑(b - 1)
CategoryTheory.MorphismProperty.instIsStableUnderTransfiniteCompositionOfShapeFunctorFunctorCategoryOfHasIterationOfShape
Mathlib.CategoryTheory.MorphismProperty.FunctorCategory
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {W : CategoryTheory.MorphismProperty C} (K : Type u') [inst_1 : LinearOrder K] [inst_2 : SuccOrder K] [inst_3 : OrderBot K] [inst_4 : WellFoundedLT K] [W.IsStableUnderTransfiniteCompositionOfShape K] (J : Type u'') [inst_6 : CategoryTheory.Category.{v'', u''} J] [CategoryTheory.Limits.HasIterationOfShape K C], (W.functorCategory J).IsStableUnderTransfiniteCompositionOfShape K
_private.Mathlib.RingTheory.MvPowerSeries.LexOrder.0.MvPowerSeries.exists_finsupp_eq_lexOrder_of_ne_zero._simp_1_2
Mathlib.RingTheory.MvPowerSeries.LexOrder
βˆ€ {Ξ± : Type u_1} {x : WithTop Ξ±}, (x β‰  ⊀) = βˆƒ a, ↑a = x
RingHom.mk'._proof_4
Mathlib.Algebra.Ring.Hom.Defs
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_1} [inst : NonAssocSemiring Ξ±] [inst_1 : NonAssocRing Ξ²] (f : Ξ± β†’* Ξ²) (map_add : βˆ€ (a b : Ξ±), f (a + b) = f a + f b) (x y : Ξ±), (↑(AddMonoidHom.mk' (⇑f) map_add)).toFun (x + y) = (↑(AddMonoidHom.mk' (⇑f) map_add)).toFun x + (↑(AddMonoidHom.mk' (⇑f) map_add)).toFun y
_private.Mathlib.Data.List.Basic.0.List.mem_getLast?_eq_getLast._proof_1_14
Mathlib.Data.List.Basic
βˆ€ {Ξ± : Type u_1} (a b : Ξ±) (l : List Ξ±), Β¬(a :: b :: l).length - 1 = 0 β†’ (a :: b :: l).length - 2 < (b :: l).length
Ring.KrullDimLE.subsingleton_primeSpectrum
Mathlib.RingTheory.KrullDimension.Zero
βˆ€ (R : Type u_1) [inst : CommSemiring R] [Ring.KrullDimLE 0 R] [IsLocalRing R], Subsingleton (PrimeSpectrum R)
id_tensor_Ο€_preserves_coequalizer_inv_colimMap_desc
Mathlib.CategoryTheory.Monoidal.Bimod
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.Limits.HasCoequalizers C] [inst_3 : βˆ€ (X : C), CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (CategoryTheory.MonoidalCategory.tensorLeft X)] {X Y Z X' Y' Z' : C} (f g : X ⟢ Y) (f' g' : X' ⟢ Y') (p : CategoryTheory.MonoidalCategoryStruct.tensorObj Z X ⟢ X') (q : CategoryTheory.MonoidalCategoryStruct.tensorObj Z Y ⟢ Y') (wf : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft Z f) q = CategoryTheory.CategoryStruct.comp p f') (wg : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft Z g) q = CategoryTheory.CategoryStruct.comp p g') (h : Y' ⟢ Z') (wh : CategoryTheory.CategoryStruct.comp f' h = CategoryTheory.CategoryStruct.comp g' h), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft Z (CategoryTheory.Limits.coequalizer.Ο€ f g)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.PreservesCoequalizer.iso (CategoryTheory.MonoidalCategory.tensorLeft Z) f g).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.colimMap (CategoryTheory.Limits.parallelPairHom (CategoryTheory.MonoidalCategoryStruct.whiskerLeft Z f) (CategoryTheory.MonoidalCategoryStruct.whiskerLeft Z g) f' g' p q wf wg)) (CategoryTheory.Limits.coequalizer.desc h wh))) = CategoryTheory.CategoryStruct.comp q h
EReal.top_ne_coe._simp_1
Mathlib.Data.EReal.Basic
βˆ€ (x : ℝ), (⊀ = ↑x) = False
Subsemiring.coe_prod._simp_1
Mathlib.Algebra.Ring.Subsemiring.Basic
βˆ€ {R : Type u} {S : Type v} [inst : NonAssocSemiring R] [inst_1 : NonAssocSemiring S] (s : Subsemiring R) (t : Subsemiring S), ↑s Γ—Λ’ ↑t = ↑(s.prod t)
QuadraticMap.zeroHomClass
Mathlib.LinearAlgebra.QuadraticForm.Basic
βˆ€ {R : Type u_3} {M : Type u_4} {N : Type u_5} [inst : CommSemiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] [inst_3 : AddCommMonoid N] [inst_4 : Module R N], ZeroHomClass (QuadraticMap R M N) M N
Std.DTreeMap.Internal.Impl.balanceL!_pair_congr
Std.Data.DTreeMap.Internal.Model
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {k : Ξ±} {v : Ξ² k} {k' : Ξ±} {v' : Ξ² k'}, ⟨k, v⟩ = ⟨k', v'⟩ β†’ βˆ€ {l l' r r' : Std.DTreeMap.Internal.Impl Ξ± Ξ²}, l = l' β†’ r = r' β†’ Std.DTreeMap.Internal.Impl.balanceL! k v l r = Std.DTreeMap.Internal.Impl.balanceL! k' v' l' r'
Module.mapEvalEquiv
Mathlib.LinearAlgebra.Dual.Defs
(R : Type u_3) β†’ (M : Type u_4) β†’ [inst : CommSemiring R] β†’ [inst_1 : AddCommMonoid M] β†’ [inst_2 : Module R M] β†’ [Module.IsReflexive R M] β†’ Submodule R M ≃o Submodule R (Module.Dual R (Module.Dual R M))
SimplexCategory.Ξ΄_comp_Οƒ_of_le
Mathlib.AlgebraicTopology.SimplexCategory.Basic
βˆ€ {n : β„•} {i : Fin (n + 2)} {j : Fin (n + 1)}, i ≀ j.castSucc β†’ CategoryTheory.CategoryStruct.comp (SimplexCategory.Ξ΄ i.castSucc) (SimplexCategory.Οƒ j.succ) = CategoryTheory.CategoryStruct.comp (SimplexCategory.Οƒ j) (SimplexCategory.Ξ΄ i)
_private.Mathlib.Algebra.Polynomial.UnitTrinomial.0.Polynomial.isUnitTrinomial_iff'._simp_1_1
Mathlib.Algebra.Polynomial.UnitTrinomial
βˆ€ {Ξ± : Type u} [inst : Monoid Ξ±] (a : Ξ±Λ£) (n : β„•), ↑a ^ n = ↑(a ^ n)
Polynomial.SplittingField.instCharZero
Mathlib.FieldTheory.SplittingField.Construction
βˆ€ {K : Type v} [inst : Field K] (f : Polynomial K) [CharZero K], CharZero f.SplittingField
FreeGroup.isReduced_iff_reduce_eq
Mathlib.GroupTheory.FreeGroup.Reduce
βˆ€ {Ξ± : Type u_1} {L : List (Ξ± Γ— Bool)} [inst : DecidableEq Ξ±], FreeGroup.IsReduced L ↔ FreeGroup.reduce L = L
instLTBitVec
Init.Prelude
{w : β„•} β†’ LT (BitVec w)
PMF.uniformOfFintype_apply
Mathlib.Probability.Distributions.Uniform
βˆ€ {Ξ± : Type u_1} [inst : Fintype Ξ±] [inst_1 : Nonempty Ξ±] (a : Ξ±), (PMF.uniformOfFintype Ξ±) a = (↑(Fintype.card Ξ±))⁻¹
ciSup_eq_ite
Mathlib.Order.ConditionallyCompleteLattice.Indexed
βˆ€ {Ξ± : Type u_1} [inst : ConditionallyCompleteLattice Ξ±] {p : Prop} [inst_1 : Decidable p] {f : p β†’ Ξ±}, ⨆ (h : p), f h = if h : p then f h else sSup βˆ…
_private.Mathlib.GroupTheory.Perm.Finite.0.Equiv.Perm.disjoint_support_closure_of_disjoint_support._simp_1_2
Mathlib.GroupTheory.Perm.Finite
βˆ€ {Ξ± : Type u_1} {t : Set Ξ±} {ΞΉ : Sort u_12} {s : ΞΉ β†’ Set Ξ±}, Disjoint t (⋃ i, s i) = βˆ€ (i : ΞΉ), Disjoint t (s i)
CategoryTheory.Arrow.shrinkHomsEquiv._proof_4
Mathlib.CategoryTheory.Comma.CardinalArrow
βˆ€ (C : Type u_2) [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.LocallySmall.{u_3, u_1, u_2} C] (x : CategoryTheory.Arrow C), CategoryTheory.Arrow.mk ((equivShrink (x.left ⟢ x.right)).symm ((equivShrink (x.left ⟢ x.right)) x.hom)) = x
ISize.toInt_maxValue
Init.Data.SInt.Lemmas
ISize.maxValue.toInt = 2 ^ (System.Platform.numBits - 1) - 1
_private.Mathlib.Tactic.Find.0.Mathlib.Tactic.Find.matchHyps
Mathlib.Tactic.Find
List Lean.Expr β†’ List Lean.Expr β†’ List Lean.Expr β†’ Lean.MetaM Bool
LaurentSeries.val_le_one_iff_eq_coe
Mathlib.RingTheory.LaurentSeries
βˆ€ (K : Type u_2) [inst : Field K] (f : LaurentSeries K), Valued.v f ≀ 1 ↔ βˆƒ F, (HahnSeries.ofPowerSeries β„€ K) F = f
Lean.Lsp.DiagnosticCode
Lean.Data.Lsp.Diagnostics
Type
Ordnode.eraseMin._unsafe_rec
Mathlib.Data.Ordmap.Ordnode
{Ξ± : Type u_1} β†’ Ordnode Ξ± β†’ Ordnode Ξ±
UpperSet.coe_nonempty
Mathlib.Order.UpperLower.CompleteLattice
βˆ€ {Ξ± : Type u_1} [inst : LE Ξ±] {s : UpperSet Ξ±}, (↑s).Nonempty ↔ s β‰  ⊀
ContinuousMap.instRegularSpace
Mathlib.Topology.CompactOpen
βˆ€ {X : Type u_2} {Y : Type u_3} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] [RegularSpace Y], RegularSpace C(X, Y)
AlgebraicTopology.DoldKan.Ξ“β‚€.Obj.map._proof_1
Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
βˆ€ {Ξ”' Ξ” : SimplexCategoryα΅’α΅–} (ΞΈ : Ξ” ⟢ Ξ”') (A : SimplicialObject.Splitting.IndexSet Ξ”), CategoryTheory.Limits.HasImage (CategoryTheory.CategoryStruct.comp ΞΈ.unop A.e)
Std.ExtTreeMap.union_insert_right_eq_insert_union
Std.Data.ExtTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t₁ tβ‚‚ : Std.ExtTreeMap Ξ± Ξ² cmp} [inst : Std.TransCmp cmp] {p : (_ : Ξ±) Γ— Ξ²}, t₁ βˆͺ tβ‚‚.insert p.fst p.snd = (t₁ βˆͺ tβ‚‚).insert p.fst p.snd
Std.ExtDHashMap.mem_modify
Std.Data.ExtDHashMap.Lemmas
βˆ€ {Ξ± : Type u} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {Ξ² : Ξ± β†’ Type v} {m : Std.ExtDHashMap Ξ± Ξ²} [inst : LawfulBEq Ξ±] {k k' : Ξ±} {f : Ξ² k β†’ Ξ² k}, k' ∈ m.modify k f ↔ k' ∈ m
LocalizedModule.instAddCommGroup._proof_2
Mathlib.Algebra.Module.LocalizedModule.Basic
βˆ€ {R : Type u_1} [inst : CommSemiring R] {S : Submonoid R} {M : Type u_2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] (a : LocalizedModule S M), 0 + a = a
CategoryTheory.MonoidalCategory.whiskerLeftIso_trans
Mathlib.CategoryTheory.Monoidal.Category
βˆ€ {C : Type u} [π’ž : CategoryTheory.Category.{v, u} C] [inst : CategoryTheory.MonoidalCategory C] (W : C) {X Y Z : C} (f : X β‰… Y) (g : Y β‰… Z), CategoryTheory.MonoidalCategory.whiskerLeftIso W (f β‰ͺ≫ g) = CategoryTheory.MonoidalCategory.whiskerLeftIso W f β‰ͺ≫ CategoryTheory.MonoidalCategory.whiskerLeftIso W g
List.isEmpty_reverse
Init.Data.List.Lemmas
βˆ€ {Ξ± : Type u_1} {xs : List Ξ±}, xs.reverse.isEmpty = xs.isEmpty
CategoryTheory.ComposableArrows.homMkSucc
Mathlib.CategoryTheory.ComposableArrows.Basic
{C : Type u_1} β†’ [inst : CategoryTheory.Category.{u_2, u_1} C] β†’ {n : β„•} β†’ {F G : CategoryTheory.ComposableArrows C (n + 1)} β†’ (Ξ± : F.obj' 0 β‹― ⟢ G.obj' 0 β‹―) β†’ (Ξ² : F.Ξ΄β‚€ ⟢ G.Ξ΄β‚€) β†’ CategoryTheory.CategoryStruct.comp (F.map' 0 1 β‹― β‹―) (CategoryTheory.ComposableArrows.app' Ξ² 0 β‹―) = CategoryTheory.CategoryStruct.comp Ξ± (G.map' 0 1 β‹― β‹―) β†’ (F ⟢ G)
_private.Mathlib.LinearAlgebra.Projection.0.LinearMap.IsIdempotentElem.commute_iff_of_isUnit._simp_1_4
Mathlib.LinearAlgebra.Projection
βˆ€ {R : Type u_1} {M : Type u_2} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {f : M ≃ₗ[R] M} {p : Submodule R M}, (p ≀ Submodule.map f p) = (p ∈ Module.End.invtSubmodule ↑f.symm)
Ideal.quotientEquivDirectSum
Mathlib.LinearAlgebra.FreeModule.IdealQuotient
{ΞΉ : Type u_1} β†’ {R : Type u_2} β†’ {S : Type u_3} β†’ [inst : CommRing R] β†’ [inst_1 : CommRing S] β†’ [inst_2 : Algebra R S] β†’ [inst_3 : IsDomain R] β†’ [inst_4 : IsPrincipalIdealRing R] β†’ [inst_5 : IsDomain S] β†’ [inst_6 : Finite ΞΉ] β†’ (F : Type u_4) β†’ [inst_7 : CommRing F] β†’ [inst_8 : Algebra F R] β†’ [inst_9 : Algebra F S] β†’ [IsScalarTower F R S] β†’ (b : Module.Basis ΞΉ R S) β†’ {I : Ideal S} β†’ (hI : I β‰  βŠ₯) β†’ (S β§Έ I) ≃ₗ[F] DirectSum ΞΉ fun i => R β§Έ Ideal.span {Ideal.smithCoeffs b I hI i}
_private.Lean.Elab.Term.TermElabM.0.Lean.Elab.Term.logUnassignedUsingErrorInfos.match_1
Lean.Elab.Term.TermElabM
(motive : MProd Lean.MVarIdSet (MProd (Array Lean.Elab.Term.MVarErrorInfo) Bool) β†’ Sort u_1) β†’ (r : MProd Lean.MVarIdSet (MProd (Array Lean.Elab.Term.MVarErrorInfo) Bool)) β†’ ((alreadyVisited : Lean.MVarIdSet) β†’ (errors : Array Lean.Elab.Term.MVarErrorInfo) β†’ (hasNewErrors : Bool) β†’ motive ⟨alreadyVisited, errors, hasNewErrors⟩) β†’ motive r
CategoryTheory.Functor.DenseAt.ofIso
Mathlib.CategoryTheory.Functor.KanExtension.DenseAt
{C : Type u₁} β†’ {D : Type uβ‚‚} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] β†’ {F : CategoryTheory.Functor C D} β†’ {Y : D} β†’ F.DenseAt Y β†’ {Y' : D} β†’ (Y β‰… Y') β†’ F.DenseAt Y'
Option.merge.eq_4
Init.Omega.Constraint
βˆ€ {Ξ± : Type u_1} (fn : Ξ± β†’ Ξ± β†’ Ξ±) (x_2 y : Ξ±), Option.merge fn (some x_2) (some y) = some (fn x_2 y)
Lean.Server.RequestCancellation._sizeOf_1
Lean.Server.RequestCancellation
Lean.Server.RequestCancellation β†’ β„•
SemiRingCat.FilteredColimits.colimitCoconeIsColimit._proof_2
Mathlib.Algebra.Category.Ring.FilteredColimits
βˆ€ {J : Type u_2} [inst : CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J SemiRingCat) [inst_1 : CategoryTheory.IsFiltered J] (t : CategoryTheory.Limits.Cocone F) (x y : ↑(SemiRingCat.FilteredColimits.R F)), (↑(SemiRingCat.FilteredColimits.colimitCoconeIsColimit.descAddMonoidHom t)).toFun (x * y) = (↑(SemiRingCat.FilteredColimits.colimitCoconeIsColimit.descAddMonoidHom t)).toFun x * (↑(SemiRingCat.FilteredColimits.colimitCoconeIsColimit.descAddMonoidHom t)).toFun y
ContinuousLinearEquiv.equivLike._proof_1
Mathlib.Topology.Algebra.Module.Equiv
βˆ€ {R₁ : Type u_1} {Rβ‚‚ : Type u_2} [inst : Semiring R₁] [inst_1 : Semiring Rβ‚‚] {σ₁₂ : R₁ β†’+* Rβ‚‚} {σ₂₁ : Rβ‚‚ β†’+* R₁} [inst_2 : RingHomInvPair σ₁₂ σ₂₁] [inst_3 : RingHomInvPair σ₂₁ σ₁₂] {M₁ : Type u_3} [inst_4 : TopologicalSpace M₁] [inst_5 : AddCommMonoid M₁] {Mβ‚‚ : Type u_4} [inst_6 : TopologicalSpace Mβ‚‚] [inst_7 : AddCommMonoid Mβ‚‚] [inst_8 : Module R₁ M₁] [inst_9 : Module Rβ‚‚ Mβ‚‚] (f : M₁ ≃SL[σ₁₂] Mβ‚‚), Function.LeftInverse f.invFun (↑f.toLinearEquiv).toFun
Lean.FindLevelMVar.main._unsafe_rec
Lean.Util.FindLevelMVar
(Lean.LMVarId β†’ Bool) β†’ Lean.Expr β†’ Lean.FindLevelMVar.Visitor
CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_Ο€_assoc
Mathlib.CategoryTheory.Enriched.FunctorCategory
βˆ€ (V : Type u₁) [inst : CategoryTheory.Category.{v₁, u₁} V] [inst_1 : CategoryTheory.MonoidalCategory V] {C : Type uβ‚‚} [inst_2 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} C] {J : Type u₃} [inst_3 : CategoryTheory.Category.{v₃, u₃} J] [inst_4 : CategoryTheory.EnrichedOrdinaryCategory V C] {F₁ Fβ‚‚ : CategoryTheory.Functor J C} [inst_5 : CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₁ Fβ‚‚] (Ο„ : F₁ ⟢ Fβ‚‚) (j : J) {Z : V} (h : (F₁.obj j ⟢[V] Fβ‚‚.obj j) ⟢ Z), CategoryTheory.CategoryStruct.comp ((CategoryTheory.Enriched.FunctorCategory.homEquiv V) Ο„) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Enriched.FunctorCategory.enrichedHomΟ€ V F₁ Fβ‚‚ j) h) = CategoryTheory.CategoryStruct.comp ((CategoryTheory.eHomEquiv V) (Ο„.app j)) h
FirstCountableTopology.frechetUrysohnSpace
Mathlib.Topology.Sequences
βˆ€ {X : Type u_1} [inst : TopologicalSpace X] [FirstCountableTopology X], FrechetUrysohnSpace X
Int.cast_le_neg_one_of_neg
Mathlib.Algebra.Order.Ring.Cast
βˆ€ {R : Type u_1} [inst : Ring R] [inst_1 : LinearOrder R] [IsStrictOrderedRing R] {a : β„€}, a < 0 β†’ ↑a ≀ -1
WithZero.instAddMonoidWithOne
Mathlib.Algebra.GroupWithZero.WithZero
{Ξ± : Type u_1} β†’ [AddMonoidWithOne Ξ±] β†’ AddMonoidWithOne (WithZero Ξ±)
DFinsupp.tsub.congr_simp
Mathlib.Data.DFinsupp.Order
βˆ€ {ΞΉ : Type u_1} (Ξ± : ΞΉ β†’ Type u_2) [inst : (i : ΞΉ) β†’ AddCommMonoid (Ξ± i)] [inst_1 : (i : ΞΉ) β†’ PartialOrder (Ξ± i)] [inst_2 : βˆ€ (i : ΞΉ), CanonicallyOrderedAdd (Ξ± i)] [inst_3 : (i : ΞΉ) β†’ Sub (Ξ± i)] [inst_4 : βˆ€ (i : ΞΉ), OrderedSub (Ξ± i)], DFinsupp.tsub Ξ± = DFinsupp.tsub Ξ±
lt_of_mul_self_lt_mul_selfβ‚€
Mathlib.Algebra.Order.GroupWithZero.Unbundled.Basic
βˆ€ {Mβ‚€ : Type u_2} [inst : MonoidWithZero Mβ‚€] [inst_1 : LinearOrder Mβ‚€] [PosMulStrictMono Mβ‚€] {a b : Mβ‚€} [MulPosMono Mβ‚€], 0 ≀ b β†’ a * a < b * b β†’ a < b
Module.piEquiv
Mathlib.LinearAlgebra.StdBasis
(ΞΉ : Type u_1) β†’ (R : Type u_2) β†’ (M : Type u_3) β†’ [Finite ΞΉ] β†’ [inst : CommSemiring R] β†’ [inst_1 : AddCommMonoid M] β†’ [inst_2 : Module R M] β†’ (ΞΉ β†’ M) ≃ₗ[R] (ΞΉ β†’ R) β†’β‚—[R] M
Orientation.rotationAux._proof_1
Mathlib.Geometry.Euclidean.Angle.Oriented.Rotation
βˆ€ {V : Type u_1} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V], SMulCommClass ℝ ℝ V
ContinuousLinearMap.bilinear_hasTemperateGrowth
Mathlib.Analysis.Distribution.TemperateGrowth
βˆ€ {π•œ : Type u_1} {D : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] [inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace ℝ F] [inst_4 : NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [inst_6 : NormedAddCommGroup D] [inst_7 : NormedSpace ℝ D] [inst_8 : NormedAddCommGroup G] [inst_9 : NormedSpace ℝ G] [inst_10 : NormedSpace π•œ F] [inst_11 : NormedSpace π•œ G] [inst_12 : NormedSpace π•œ E] (B : E β†’L[π•œ] F β†’L[π•œ] G) {f : D β†’ E} {g : D β†’ F}, Function.HasTemperateGrowth f β†’ Function.HasTemperateGrowth g β†’ Function.HasTemperateGrowth fun x => (B (f x)) (g x)
Lean.Grind.ToInt.toInt.eq_1
Init.Data.Int.OfNat
βˆ€ (Ξ± : Type u) {range : Lean.Grind.IntInterval} [self : Lean.Grind.ToInt Ξ± range], Lean.Grind.ToInt.toInt = self.1
Lean.Meta.Try.Collector.OrdSet.set
Lean.Meta.Tactic.Try.Collect
{Ξ± : Type} β†’ [inst : Hashable Ξ±] β†’ [inst_1 : BEq Ξ±] β†’ Lean.Meta.Try.Collector.OrdSet Ξ± β†’ Std.HashSet Ξ±
_private.Mathlib.Topology.Algebra.InfiniteSum.Defs.0.hasProd_fintype_support._simp_1_1
Mathlib.Topology.Algebra.InfiniteSum.Defs
βˆ€ {Ξ± : Type u} {ΞΉ : Sort v} {x : Ξ±} {s : ΞΉ β†’ Set Ξ±}, (x ∈ β‹‚ i, s i) = βˆ€ (i : ΞΉ), x ∈ s i
hasStrictDerivAt_abs
Mathlib.Analysis.Calculus.Deriv.Abs
βˆ€ {x : ℝ}, x β‰  0 β†’ HasStrictDerivAt (fun x => |x|) (↑(SignType.sign x)) x
Fin.dfoldrM.loop._sunfold
Batteries.Data.Fin.Basic
{m : Type u_1 β†’ Type u_2} β†’ [Monad m] β†’ (n : β„•) β†’ (Ξ± : Fin (n + 1) β†’ Type u_1) β†’ ((i : Fin n) β†’ Ξ± i.succ β†’ m (Ξ± i.castSucc)) β†’ (i : β„•) β†’ (h : i < n + 1) β†’ Ξ± ⟨i, h⟩ β†’ m (Ξ± 0)
_private.Mathlib.Algebra.CharP.Two.0.CharP.orderOf_eq_two_iff._simp_1_2
Mathlib.Algebra.CharP.Two
βˆ€ {R : Type u} [inst : Ring R] {a : R} [NoZeroDivisors R], (a ^ 2 = 1) = (a = 1 ∨ a = -1)
matPolyEquiv_symm_map_eval
Mathlib.RingTheory.MatrixPolynomialAlgebra
βˆ€ {R : Type u_1} [inst : CommSemiring R] {n : Type w} [inst_1 : DecidableEq n] [inst_2 : Fintype n] (M : Polynomial (Matrix n n R)) (r : R), (matPolyEquiv.symm M).map (Polynomial.eval r) = Polynomial.eval ((Matrix.scalar n) r) M
MonoidWithZero.toOppositeMulActionWithZero
Mathlib.Algebra.GroupWithZero.Action.Defs
(Mβ‚€ : Type u_2) β†’ [inst : MonoidWithZero Mβ‚€] β†’ MulActionWithZero M₀ᡐᡒᡖ Mβ‚€
Module.Basis.dualBasis_coord_toDualEquiv_apply
Mathlib.LinearAlgebra.Dual.Basis
βˆ€ {R : Type uR} {M : Type uM} {ΞΉ : Type uΞΉ} [inst : CommSemiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] [inst_3 : DecidableEq ΞΉ] (b : Module.Basis ΞΉ R M) [inst_4 : Finite ΞΉ] (i : ΞΉ) (f : M), (b.dualBasis.coord i) (b.toDualEquiv f) = (b.coord i) f
Lean.Parser.Module.module.formatter
Lean.Parser.Module
Lean.PrettyPrinter.Formatter
Module.Basis.noConfusionType
Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_1} β†’ {R : Type u_3} β†’ {M : Type u_6} β†’ [inst : Semiring R] β†’ [inst_1 : AddCommMonoid M] β†’ [inst_2 : Module R M] β†’ Sort u β†’ Module.Basis ΞΉ R M β†’ Module.Basis ΞΉ R M β†’ Sort u