name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Irrational.ne_one
Mathlib.NumberTheory.Real.Irrational
βˆ€ {x : ℝ}, Irrational x β†’ x β‰  1
forall_imp_iff_exists_imp
Mathlib.Logic.Basic
βˆ€ {Ξ± : Sort u_3} {p : Ξ± β†’ Prop} {b : Prop} [ha : Nonempty Ξ±], (βˆ€ (x : Ξ±), p x) β†’ b ↔ βˆƒ x, p x β†’ b
_private.Std.Data.DTreeMap.Internal.Model.0.Std.DTreeMap.Internal.Impl.minView.match_1.eq_1
Std.Data.DTreeMap.Internal.Model
βˆ€ {Ξ± : Type u_1} {Ξ² : Ξ± β†’ Type u_2} (l' r' : Std.DTreeMap.Internal.Impl Ξ± Ξ²) (motive : Std.DTreeMap.Internal.Impl.View Ξ± Ξ² (l'.size + r'.size) β†’ Sort u_3) (dk : Ξ±) (dv : Ξ² dk) (dt : Std.DTreeMap.Internal.Impl Ξ± Ξ²) (hdt : dt.Balanced) (hdt' : dt.size = l'.size + r'.size) (h_1 : (dk : Ξ±) β†’ (dv : Ξ² dk) β†’ (dt : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β†’ (hdt : dt.Balanced) β†’ (hdt' : dt.size = l'.size + r'.size) β†’ motive { k := dk, v := dv, tree := { impl := dt, balanced_impl := hdt, size_impl := hdt' } }), (match { k := dk, v := dv, tree := { impl := dt, balanced_impl := hdt, size_impl := hdt' } } with | { k := dk, v := dv, tree := { impl := dt, balanced_impl := hdt, size_impl := hdt' } } => h_1 dk dv dt hdt hdt') = h_1 dk dv dt hdt hdt'
PMF.support_uniformOfFintype
Mathlib.Probability.Distributions.Uniform
βˆ€ (Ξ± : Type u_2) [inst : Fintype Ξ±] [inst_1 : Nonempty Ξ±], (PMF.uniformOfFintype Ξ±).support = ⊀
Mathlib.Tactic.BicategoryLike.Morβ‚‚Iso._sizeOf_inst
Mathlib.Tactic.CategoryTheory.Coherence.Datatypes
SizeOf Mathlib.Tactic.BicategoryLike.Morβ‚‚Iso
CommGrpCat.Forgetβ‚‚.createsLimit.eq_1
Mathlib.Algebra.Category.Grp.Limits
βˆ€ {J : Type v} [inst : CategoryTheory.Category.{w, v} J] (F : CategoryTheory.Functor J CommGrpCat), CommGrpCat.Forgetβ‚‚.createsLimit F = CategoryTheory.createsLimitOfReflectsIso fun c hc => have this := β‹―; have this := β‹―; have this_1 := this; have this_2 := this_1; { liftedCone := { pt := CommGrpCat.of (CategoryTheory.Limits.Types.Small.limitCone (F.comp (CategoryTheory.forget CommGrpCat))).pt, Ο€ := { app := fun j => CommGrpCat.ofHom (MonCat.limitΟ€MonoidHom (F.comp ((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat))) j), naturality := β‹― } }, validLift := (GrpCat.limitConeIsLimit (F.comp (CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat))).uniqueUpToIso hc, makesLimit := CategoryTheory.Limits.IsLimit.ofFaithful ((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat)) (MonCat.HasLimits.limitConeIsLimit (F.comp ((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat)))) (fun s => { hom' := { toFun := fun v => EquivLike.coe (equivShrink ↑((F.comp ((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat))).comp (CategoryTheory.forget MonCat)).sections) ⟨fun j => ((CategoryTheory.forget MonCat).mapCone (((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat)).mapCone s)).Ο€.app j v, β‹―βŸ©, map_one' := β‹―, map_mul' := β‹― } }) β‹― }
CategoryTheory.NatTrans.PullbackShift.natIsoId.eq_1
Mathlib.CategoryTheory.Shift.Pullback
βˆ€ (C : Type u_1) [inst : CategoryTheory.Category.{v_1, u_1} C] {A : Type u_2} {B : Type u_3} [inst_1 : AddMonoid A] [inst_2 : AddMonoid B] (Ο† : A β†’+ B) [inst_3 : CategoryTheory.HasShift C B], CategoryTheory.NatTrans.PullbackShift.natIsoId C Ο† = CategoryTheory.Iso.refl (CategoryTheory.Functor.id (CategoryTheory.PullbackShift C Ο†))
NormedAddGroupHom.norm_id_le
Mathlib.Analysis.Normed.Group.Hom
βˆ€ (V : Type u_1) [inst : SeminormedAddCommGroup V], β€–NormedAddGroupHom.id Vβ€– ≀ 1
SimpleGraph.not_isDiag_of_mem_edgeSet
Mathlib.Combinatorics.SimpleGraph.Basic
βˆ€ {V : Type u} (G : SimpleGraph V) {e : Sym2 V}, e ∈ G.edgeSet β†’ Β¬e.IsDiag
Array.append_inj_left
Init.Data.Array.Lemmas
βˆ€ {Ξ± : Type u_1} {xs₁ xsβ‚‚ ys₁ ysβ‚‚ : Array Ξ±}, xs₁ ++ ys₁ = xsβ‚‚ ++ ysβ‚‚ β†’ xs₁.size = xsβ‚‚.size β†’ xs₁ = xsβ‚‚
_private.Mathlib.Order.Filter.ENNReal.0.NNReal.toReal_limsup._simp_1_6
Mathlib.Order.Filter.ENNReal
βˆ€ {q : NNReal}, (0 ≀ ↑q) = True
List.take_modify
Init.Data.List.Nat.Modify
βˆ€ {Ξ± : Type u_1} (f : Ξ± β†’ Ξ±) (i j : β„•) (l : List Ξ±), List.take j (l.modify i f) = (List.take j l).modify i f
MeasureTheory.exists_isSigmaFiniteSet_measure_ge
Mathlib.MeasureTheory.Measure.Decomposition.Exhaustion
βˆ€ {Ξ± : Type u_1} {mΞ± : MeasurableSpace Ξ±} (ΞΌ Ξ½ : MeasureTheory.Measure Ξ±) [MeasureTheory.IsFiniteMeasure Ξ½] (n : β„•), βˆƒ t, MeasurableSet t ∧ MeasureTheory.SigmaFinite (ΞΌ.restrict t) ∧ (⨆ s, ⨆ (_ : MeasurableSet s), ⨆ (_ : MeasureTheory.SigmaFinite (ΞΌ.restrict s)), Ξ½ s) - 1 / ↑n ≀ Ξ½ t
Subring.prod_top
Mathlib.Algebra.Ring.Subring.Basic
βˆ€ {R : Type u} {S : Type v} [inst : Ring R] [inst_1 : Ring S] (s : Subring R), s.prod ⊀ = Subring.comap (RingHom.fst R S) s
RestrictedProduct.instRingCoeOfSubringClass._proof_10
Mathlib.Topology.Algebra.RestrictedProduct.Basic
βˆ€ {ΞΉ : Type u_1} (R : ΞΉ β†’ Type u_2) {𝓕 : Filter ΞΉ} {S : ΞΉ β†’ Type u_3} [inst : (i : ΞΉ) β†’ SetLike (S i) (R i)] {B : (i : ΞΉ) β†’ S i} [inst_1 : (i : ΞΉ) β†’ Ring (R i)] [inst_2 : βˆ€ (i : ΞΉ), SubringClass (S i) (R i)], ⇑0 = ⇑0
CategoryTheory.Arrow.homMk._auto_1
Mathlib.CategoryTheory.Comma.Arrow
Lean.Syntax
addOrderOf.eq_1
Mathlib.GroupTheory.OrderOfElement
βˆ€ {G : Type u_1} [inst : AddMonoid G] (x : G), addOrderOf x = Function.minimalPeriod (fun x_1 => x + x_1) 0
AffineSubspace.setOf_sSameSide_eq_image2
Mathlib.Analysis.Convex.Side
βˆ€ {R : Type u_1} {V : Type u_2} {P : Type u_4} [inst : Field R] [inst_1 : LinearOrder R] [inst_2 : IsStrictOrderedRing R] [inst_3 : AddCommGroup V] [inst_4 : Module R V] [inst_5 : AddTorsor V P] {s : AffineSubspace R P} {x p : P}, x βˆ‰ s β†’ p ∈ s β†’ {y | s.SSameSide x y} = Set.image2 (fun t q => t β€’ (x -α΅₯ p) +α΅₯ q) (Set.Ioi 0) ↑s
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.getKey!_minKey!._simp_1_2
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {instOrd : Ord Ξ±} {a b : Ξ±}, (compare a b β‰  Ordering.eq) = ((a == b) = false)
Lean.Server.instRpcEncodableOption
Lean.Server.Rpc.Basic
{Ξ± : Type} β†’ [Lean.Server.RpcEncodable Ξ±] β†’ Lean.Server.RpcEncodable (Option Ξ±)
QuotientAddGroup.quotientKerEquivOfRightInverse._proof_2
Mathlib.GroupTheory.QuotientGroup.Basic
βˆ€ {G : Type u_1} [inst : AddGroup G] {H : Type u_2} [inst_1 : AddGroup H] (Ο† : G β†’+ H) (x y : G β§Έ Ο†.ker), (↑(QuotientAddGroup.kerLift Ο†)).toFun (x + y) = (↑(QuotientAddGroup.kerLift Ο†)).toFun x + (↑(QuotientAddGroup.kerLift Ο†)).toFun y
_private.Lean.Meta.IndPredBelow.0.Lean.Meta.IndPredBelow.instToMessageDataNewDecl.match_1
Lean.Meta.IndPredBelow
(motive : Lean.Meta.IndPredBelow.NewDecl✝ β†’ Sort u_1) β†’ (x : Lean.Meta.IndPredBelow.NewDecl✝¹) β†’ ((decl : Lean.LocalDecl) β†’ (indName : Lean.Name) β†’ (vars : Array Lean.FVarId) β†’ motive (Lean.Meta.IndPredBelow.NewDecl.below✝ decl indName vars)) β†’ ((decl : Lean.LocalDecl) β†’ (idx : β„•) β†’ (vars : Array Lean.FVarId) β†’ motive (Lean.Meta.IndPredBelow.NewDecl.motive✝ decl idx vars)) β†’ motive x
Simps.Config.rhsMd._default
Mathlib.Tactic.Simps.Basic
Lean.Meta.TransparencyMode
MulOpposite.instIsCancelMulZero
Mathlib.Algebra.GroupWithZero.Opposite
βˆ€ {Ξ± : Type u_1} [inst : Mul Ξ±] [inst_1 : Zero Ξ±] [IsCancelMulZero Ξ±], IsCancelMulZero αᡐᡒᡖ
instInhabitedInt32
Init.Data.SInt.Basic
Inhabited Int32
ENat.LEInfty.casesOn
Mathlib.Geometry.Manifold.IsManifold.Basic
{m : WithTop β„•βˆž} β†’ {motive : ENat.LEInfty m β†’ Sort u} β†’ (t : ENat.LEInfty m) β†’ ((out : m ≀ β†‘βŠ€) β†’ motive β‹―) β†’ motive t
ZMod.exists_sq_eq_prime_iff_of_mod_four_eq_one
Mathlib.NumberTheory.LegendreSymbol.QuadraticReciprocity
βˆ€ {p q : β„•} [inst : Fact (Nat.Prime p)] [inst_1 : Fact (Nat.Prime q)], p % 4 = 1 β†’ q β‰  2 β†’ (IsSquare ↑q ↔ IsSquare ↑p)
CategoryTheory.Under.homMk_eta
Mathlib.CategoryTheory.Comma.Over.Basic
βˆ€ {T : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} T] {X : T} {U V : CategoryTheory.Under X} (f : U ⟢ V) (h : CategoryTheory.CategoryStruct.comp U.hom f.right = V.hom), CategoryTheory.Under.homMk f.right h = f
CategoryTheory.sheafHom'Iso
Mathlib.CategoryTheory.Sites.SheafHom
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {J : CategoryTheory.GrothendieckTopology C} β†’ {A : Type u'} β†’ [inst_1 : CategoryTheory.Category.{v', u'} A] β†’ (F G : CategoryTheory.Sheaf J A) β†’ CategoryTheory.sheafHom' F G β‰… CategoryTheory.presheafHom F.val G.val
_private.Init.Data.String.Pattern.String.0.String.Slice.Pattern.ForwardSliceSearcher.instIteratorIdSearchStep.match_1.eq_1
Init.Data.String.Pattern.String
βˆ€ (s : String.Slice) (motive : String.Slice.Pattern.ForwardSliceSearcher s β†’ Sort u_1) (pos : s.Pos) (h_1 : (pos : s.Pos) β†’ motive (String.Slice.Pattern.ForwardSliceSearcher.emptyBefore pos)) (h_2 : (pos : s.Pos) β†’ (h : pos β‰  s.endPos) β†’ motive (String.Slice.Pattern.ForwardSliceSearcher.emptyAt pos h)) (h_3 : (needle : String.Slice) β†’ (table : Vector β„• needle.utf8ByteSize) β†’ (ht : table = String.Slice.Pattern.ForwardSliceSearcher.buildTable needle) β†’ (stackPos needlePos : String.Pos.Raw) β†’ (hn : needlePos < needle.rawEndPos) β†’ motive (String.Slice.Pattern.ForwardSliceSearcher.proper needle table ht stackPos needlePos hn)) (h_4 : Unit β†’ motive String.Slice.Pattern.ForwardSliceSearcher.atEnd), (match String.Slice.Pattern.ForwardSliceSearcher.emptyBefore pos with | String.Slice.Pattern.ForwardSliceSearcher.emptyBefore pos => h_1 pos | String.Slice.Pattern.ForwardSliceSearcher.emptyAt pos h => h_2 pos h | String.Slice.Pattern.ForwardSliceSearcher.proper needle table ht stackPos needlePos hn => h_3 needle table ht stackPos needlePos hn | String.Slice.Pattern.ForwardSliceSearcher.atEnd => h_4 ()) = h_1 pos
Lean.Grind.AC.Expr.denote_toSeq
Init.Grind.AC
βˆ€ {Ξ± : Sort u_1} (ctx : Lean.Grind.AC.Context Ξ±) {x : Std.Associative ctx.op} (e : Lean.Grind.AC.Expr), Lean.Grind.AC.Seq.denote ctx e.toSeq = Lean.Grind.AC.Expr.denote ctx e
Std.Tactic.BVDecide.BVExpr.bitblast.blastConst.go.eq_def
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Const
βˆ€ {Ξ± : Type} [inst : Hashable Ξ±] [inst_1 : DecidableEq Ξ±] {w : β„•} (aig : Std.Sat.AIG Ξ±) (val : BitVec w) (curr : β„•) (s : aig.RefVec curr) (hcurr : curr ≀ w), Std.Tactic.BVDecide.BVExpr.bitblast.blastConst.go aig val curr s hcurr = if hcurr : curr < w then have bitRef := aig.mkConstCached (val.getLsbD curr); have s := s.push bitRef; Std.Tactic.BVDecide.BVExpr.bitblast.blastConst.go aig val (curr + 1) s β‹― else have hcurr := β‹―; hcurr β–Έ s
AffineSubspace.affineSpan_pair_parallel_iff_vectorSpan_eq
Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
βˆ€ {k : Type u_1} {V : Type u_2} {P : Type u_3} [inst : Ring k] [inst_1 : AddCommGroup V] [inst_2 : Module k V] [inst_3 : AddTorsor V P] {p₁ pβ‚‚ p₃ pβ‚„ : P}, (affineSpan k {p₁, pβ‚‚}).Parallel (affineSpan k {p₃, pβ‚„}) ↔ vectorSpan k {p₁, pβ‚‚} = vectorSpan k {p₃, pβ‚„}
IsLprojection.instLatticeSubtypeOfFaithfulSMul._proof_2
Mathlib.Analysis.Normed.Module.MStructure
βˆ€ {X : Type u_2} [inst : NormedAddCommGroup X] {M : Type u_1} [inst_1 : Ring M] [inst_2 : Module M X] [inst_3 : FaithfulSMul M X] (P Q : { P // IsLprojection X P }), Q ≀ P βŠ” Q
Additive.ofMul_lt._simp_1
Mathlib.Algebra.Order.Monoid.Unbundled.TypeTags
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] {a b : Ξ±}, (Additive.ofMul a < Additive.ofMul b) = (a < b)
Std.Tactic.BVDecide.BVExpr.extract.noConfusion
Std.Tactic.BVDecide.Bitblast.BVExpr.Basic
{P : Sort u} β†’ {w start len : β„•} β†’ {expr : Std.Tactic.BVDecide.BVExpr w} β†’ {w' start' len' : β„•} β†’ {expr' : Std.Tactic.BVDecide.BVExpr w'} β†’ len = len' β†’ Std.Tactic.BVDecide.BVExpr.extract start len expr ≍ Std.Tactic.BVDecide.BVExpr.extract start' len' expr' β†’ (w = w' β†’ start = start' β†’ len = len' β†’ expr ≍ expr' β†’ P) β†’ P
_private.Mathlib.LinearAlgebra.Matrix.DotProduct.0.Matrix.vecMul_conjTranspose_mul_self_eq_zero._simp_1_2
Mathlib.LinearAlgebra.Matrix.DotProduct
βˆ€ {n : Type u_3} {Ξ± : Type v} {ΞΉ : Type u_6} [inst : Zero Ξ±] [Nonempty ΞΉ] (v : n β†’ Ξ±), (Matrix.replicateRow ΞΉ v = 0) = (v = 0)
CategoryTheory.Functor.CoreMonoidal.toOplaxMonoidal_Ξ·
Mathlib.CategoryTheory.Monoidal.Functor
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] {D : Type uβ‚‚} [inst_2 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] [inst_3 : CategoryTheory.MonoidalCategory D] {F : CategoryTheory.Functor C D} (h : F.CoreMonoidal), CategoryTheory.Functor.OplaxMonoidal.Ξ· F = h.Ξ΅Iso.inv
Mathlib.Tactic.DepRewrite.zetaDelta
Mathlib.Tactic.DepRewrite
Lean.Expr β†’ Std.HashSet Lean.FVarId β†’ Lean.MetaM Lean.Expr
Lean.Meta.Grind.SymbolPriorityEntry.mk.injEq
Lean.Meta.Tactic.Grind.EMatchTheorem
βˆ€ (declName : Lean.Name) (prio : β„•) (declName_1 : Lean.Name) (prio_1 : β„•), ({ declName := declName, prio := prio } = { declName := declName_1, prio := prio_1 }) = (declName = declName_1 ∧ prio = prio_1)
_private.Std.Sat.AIG.RelabelNat.0.Std.Sat.AIG.RelabelNat.State.Inv2.property._simp_1_5
Std.Sat.AIG.RelabelNat
βˆ€ {Ξ± : Type u_1} [inst : BEq Ξ±] [LawfulBEq Ξ±] {a b : Ξ±}, ((a == b) = false) = (a β‰  b)
Std.DTreeMap.Internal.Impl.size_insert_le
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {instOrd : Ord Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} [Std.TransOrd Ξ±] (h : t.WF) {k : Ξ±} {v : Ξ² k}, (Std.DTreeMap.Internal.Impl.insert k v t β‹―).impl.size ≀ t.size + 1
WeierstrassCurve.Ξ¨_neg
Mathlib.AlgebraicGeometry.EllipticCurve.DivisionPolynomial.Basic
βˆ€ {R : Type r} [inst : CommRing R] (W : WeierstrassCurve R) (n : β„€), W.Ξ¨ (-n) = -W.Ξ¨ n
Lean.PrettyPrinter.Delaborator.TopDownAnalyze.Context.knowsType
Lean.PrettyPrinter.Delaborator.TopDownAnalyze
Lean.PrettyPrinter.Delaborator.TopDownAnalyze.Context β†’ Bool
CategoryTheory.Functor.isMittagLeffler_of_surjective
Mathlib.CategoryTheory.CofilteredSystem
βˆ€ {J : Type u} [inst : CategoryTheory.Category.{v_1, u} J] (F : CategoryTheory.Functor J (Type v)), (βˆ€ ⦃i j : J⦄ (f : i ⟢ j), Function.Surjective (F.map f)) β†’ F.IsMittagLeffler
_private.Mathlib.RingTheory.Polynomial.ContentIdeal.0.Polynomial.mul_contentIdeal_le_radical_contentIdeal_mul._simp_1_3
Mathlib.RingTheory.Polynomial.ContentIdeal
βˆ€ {R : Type u_1} {S : Type u_2} {F : Type u_3} [inst : Semiring R] [inst_1 : Semiring S] [inst_2 : FunLike F R S] [rc : RingHomClass F R S] {I : Ideal R} (f : F), (I ≀ RingHom.ker f) = (Ideal.map f I = βŠ₯)
CategoryTheory.Bicategory.HasLeftKanExtension.rec
Mathlib.CategoryTheory.Bicategory.Kan.HasKan
{B : Type u} β†’ [inst : CategoryTheory.Bicategory B] β†’ {a b c : B} β†’ {f : a ⟢ b} β†’ {g : a ⟢ c} β†’ {motive : CategoryTheory.Bicategory.HasLeftKanExtension f g β†’ Sort u_1} β†’ ((hasInitial : CategoryTheory.Limits.HasInitial (CategoryTheory.Bicategory.LeftExtension f g)) β†’ motive β‹―) β†’ (t : CategoryTheory.Bicategory.HasLeftKanExtension f g) β†’ motive t
Pi.addSemigroup._proof_1
Mathlib.Algebra.Group.Pi.Basic
βˆ€ {I : Type u_1} {f : I β†’ Type u_2} [inst : (i : I) β†’ AddSemigroup (f i)] (a b c : (i : I) β†’ f i), a + b + c = a + (b + c)
List.flatMap.eq_1
Init.Data.List.Basic
βˆ€ {Ξ± : Type u} {Ξ² : Type v} (b : Ξ± β†’ List Ξ²) (as : List Ξ±), List.flatMap b as = (List.map b as).flatten
_private.Init.Data.Nat.Fold.0.Nat.foldTR.loop._sunfold
Init.Data.Nat.Fold
{Ξ± : Type u} β†’ (n : β„•) β†’ ((i : β„•) β†’ i < n β†’ Ξ± β†’ Ξ±) β†’ (j : β„•) β†’ j ≀ n β†’ Ξ± β†’ Ξ±
_private.Mathlib.Analysis.Meromorphic.FactorizedRational.0.Function.FactorizedRational.ne_zero._simp_1_2
Mathlib.Analysis.Meromorphic.FactorizedRational
βˆ€ {G : Type u_3} [inst : AddGroup G] {a b : G}, (a - b β‰  0) = (a β‰  b)
_private.Lean.Meta.Tactic.Grind.Arith.Linear.Proof.0.Lean.Meta.Grind.Arith.Linear.caching._sparseCasesOn_4
Lean.Meta.Tactic.Grind.Arith.Linear.Proof
{Ξ± : Type u} β†’ {motive : Option Ξ± β†’ Sort u_1} β†’ (t : Option Ξ±) β†’ ((val : Ξ±) β†’ motive (some val)) β†’ (Nat.hasNotBit 2 t.ctorIdx β†’ motive t) β†’ motive t
_private.Mathlib.Computability.DFA.0.Language.IsRegular.add.match_1_1
Mathlib.Computability.DFA
βˆ€ {T : Type u_1} {L2 : Language T} (motive : L2.IsRegular β†’ Prop) (h2 : L2.IsRegular), (βˆ€ (Οƒ2 : Type) (w : Fintype Οƒ2) (M2 : DFA T Οƒ2) (hM2 : M2.accepts = L2), motive β‹―) β†’ motive h2
_private.Mathlib.CategoryTheory.Filtered.Small.0.CategoryTheory.IsCofiltered.CofilteredClosureSmall.InductiveStep.min.sizeOf_spec
Mathlib.CategoryTheory.Filtered.Small
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {n : β„•} {X : (k : β„•) β†’ k < n β†’ (t : Type (max v w)) Γ— (t β†’ C)} [inst_1 : SizeOf C] {k k' : β„•} (hk : k < n) (hk' : k' < n) (a : (X k hk).fst) (a_1 : (X k' hk').fst), sizeOf (CategoryTheory.IsCofiltered.CofilteredClosureSmall.InductiveStep.min✝ hk hk' a a_1) = 1 + sizeOf k + sizeOf k' + sizeOf hk + sizeOf hk' + sizeOf a + sizeOf a_1
NNReal.inner_le_Lp_mul_Lq_tsum'
Mathlib.Analysis.MeanInequalities
βˆ€ {ΞΉ : Type u} {f g : ΞΉ β†’ NNReal} {p q : ℝ}, p.HolderConjugate q β†’ (Summable fun i => f i ^ p) β†’ (Summable fun i => g i ^ q) β†’ βˆ‘' (i : ΞΉ), f i * g i ≀ (βˆ‘' (i : ΞΉ), f i ^ p) ^ (1 / p) * (βˆ‘' (i : ΞΉ), g i ^ q) ^ (1 / q)
_private.Batteries.Data.Fin.Fold.0.Fin.dfoldrM_loop_succ._proof_3
Batteries.Data.Fin.Fold
βˆ€ {n i : β„•} {h : i + 1 < n + 1}, Β¬i < n + 1 β†’ False
Batteries.RBNode.Path.zoom_del._unary
Batteries.Data.RBMap.Lemmas
βˆ€ {Ξ± : Type u_1} (_x : (_ : Ξ± β†’ Ordering) Γ—' (_ : Batteries.RBNode.Path Ξ±) Γ—' (_ : Batteries.RBNode Ξ±) Γ—' (_ : Batteries.RBNode.Path Ξ±) Γ—' Batteries.RBNode Ξ±), Batteries.RBNode.zoom _x.1 _x.2.2.2.2 _x.2.1 = (_x.2.2.1, _x.2.2.2.1) β†’ _x.2.1.del (Batteries.RBNode.del _x.1 _x.2.2.2.2) (match _x.2.2.2.2 with | Batteries.RBNode.node c l v r => c | x => Batteries.RBColor.red) = _x.2.2.2.1.del _x.2.2.1.delRoot (match _x.2.2.1 with | Batteries.RBNode.node c l v r => c | x => Batteries.RBColor.red)
Lean.Parser.Term.let._regBuiltin.Lean.Parser.Term.letOptZeta.formatter_21
Lean.Parser.Term
IO Unit
_private.Mathlib.Order.Monotone.Basic.0.StrictAnti.isMax_of_apply.match_1_1
Mathlib.Order.Monotone.Basic
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] {a : Ξ±} (motive : (βˆƒ b, a < b) β†’ Prop) (x : βˆƒ b, a < b), (βˆ€ (w : Ξ±) (hb : a < w), motive β‹―) β†’ motive x
_private.Lean.ExtraModUses.0.Lean.instHashableExtraModUse.hash.match_1
Lean.ExtraModUses
(motive : Lean.ExtraModUse β†’ Sort u_1) β†’ (x : Lean.ExtraModUse) β†’ ((a : Lean.Name) β†’ (a_1 a_2 : Bool) β†’ motive { module := a, isExported := a_1, isMeta := a_2 }) β†’ motive x
CategoryTheory.Quotient.lift._proof_2
Mathlib.CategoryTheory.Quotient
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] (r : HomRel C) {D : Type u_4} [inst_1 : CategoryTheory.Category.{u_3, u_4} D] (F : CategoryTheory.Functor C D) (H : βˆ€ (x y : C) (f₁ fβ‚‚ : x ⟢ y), r f₁ fβ‚‚ β†’ F.map f₁ = F.map fβ‚‚) {a b c : CategoryTheory.Quotient r} (f : a ⟢ b) (g : b ⟢ c), Quot.liftOn (CategoryTheory.CategoryStruct.comp f g) (fun f => F.map f) β‹― = CategoryTheory.CategoryStruct.comp (Quot.liftOn f (fun f => F.map f) β‹―) (Quot.liftOn g (fun f => F.map f) β‹―)
IntermediateField.map_id
Mathlib.FieldTheory.IntermediateField.Basic
βˆ€ {K : Type u_1} {L : Type u_2} [inst : Field K] [inst_1 : Field L] [inst_2 : Algebra K L] (S : IntermediateField K L), IntermediateField.map (AlgHom.id K L) S = S
_private.Mathlib.LinearAlgebra.Dimension.Constructions.0.rank_quotient_add_rank_le.match_1_1
Mathlib.LinearAlgebra.Dimension.Constructions
βˆ€ {R : Type u_2} {M : Type u_1} [inst : Ring R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] (M' : Submodule R M) (motive : { s // LinearIndepOn R id s } β†’ Prop) (x : { s // LinearIndepOn R id s }), (βˆ€ (t : Set β†₯M') (ht : LinearIndepOn R id t), motive ⟨t, ht⟩) β†’ motive x
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.structuresPass
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Structures
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Pass
CategoryTheory.Functor.whiskeringLeft._proof_2
Mathlib.CategoryTheory.Whiskering
βˆ€ (C : Type u_5) [inst : CategoryTheory.Category.{u_6, u_5} C] (D : Type u_3) [inst_1 : CategoryTheory.Category.{u_1, u_3} D] (E : Type u_4) [inst_2 : CategoryTheory.Category.{u_2, u_4} E] (F : CategoryTheory.Functor C D) {X Y Z : CategoryTheory.Functor D E} (f : X ⟢ Y) (g : Y ⟢ Z), F.whiskerLeft (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (F.whiskerLeft f) (F.whiskerLeft g)
Module.End.isIntegral
Mathlib.RingTheory.IntegralClosure.Algebra.Basic
βˆ€ {R : Type u_1} [inst : CommRing R] {M : Type u_5} [inst_1 : AddCommGroup M] [inst_2 : Module R M] [Module.Finite R M], Algebra.IsIntegral R (Module.End R M)
Std.HashMap.getKeyD_union_of_not_mem_left
Std.Data.HashMap.Lemmas
βˆ€ {Ξ± : Type u} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {Ξ² : Type v} {m₁ mβ‚‚ : Std.HashMap Ξ± Ξ²} [EquivBEq Ξ±] [LawfulHashable Ξ±] {k fallback : Ξ±}, k βˆ‰ m₁ β†’ (m₁ βˆͺ mβ‚‚).getKeyD k fallback = mβ‚‚.getKeyD k fallback
Module.Basis.norm_nonneg
Mathlib.Analysis.Normed.Unbundled.FiniteExtension
βˆ€ {K : Type u_1} {L : Type u_2} [inst : NormedField K] [inst_1 : Ring L] [inst_2 : Algebra K L] {ΞΉ : Type u_3} [inst_3 : Fintype ΞΉ] [inst_4 : Nonempty ΞΉ] (B : Module.Basis ΞΉ K L) (x : L), 0 ≀ B.norm x
_private.Mathlib.ModelTheory.Complexity.0.FirstOrder.Language.BoundedFormula.toPrenexImp.match_1.splitter._sparseCasesOn_6
Mathlib.ModelTheory.Complexity
{L : FirstOrder.Language} β†’ {Ξ± : Type u'} β†’ {motive : (a : β„•) β†’ L.BoundedFormula Ξ± a β†’ Sort u_1} β†’ {a : β„•} β†’ (t : L.BoundedFormula Ξ± a) β†’ ({n : β„•} β†’ (f₁ fβ‚‚ : L.BoundedFormula Ξ± n) β†’ motive n (f₁.imp fβ‚‚)) β†’ (Nat.hasNotBit 8 t.ctorIdx β†’ motive a t) β†’ motive a t
AnalyticAt.smul
Mathlib.Analysis.Analytic.Constructions
βˆ€ {π•œ : Type u_2} [inst : NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {𝕝 : Type u_7} [inst_5 : NontriviallyNormedField 𝕝] [inst_6 : NormedAlgebra π•œ 𝕝] [inst_7 : NormedSpace 𝕝 F] [IsScalarTower π•œ 𝕝 F] {f : E β†’ 𝕝} {g : E β†’ F} {z : E}, AnalyticAt π•œ f z β†’ AnalyticAt π•œ g z β†’ AnalyticAt π•œ (f β€’ g) z
_private.Batteries.Data.BinaryHeap.0.Batteries.BinaryHeap.mkHeap.loop
Batteries.Data.BinaryHeap
{Ξ± : Type u_1} β†’ {sz : β„•} β†’ (Ξ± β†’ Ξ± β†’ Bool) β†’ (i : β„•) β†’ Vector Ξ± sz β†’ i ≀ sz β†’ Vector Ξ± sz
Std.DHashMap.Raw.Const.getD
Std.Data.DHashMap.Raw
{Ξ± : Type u} β†’ {Ξ² : Type v} β†’ [BEq Ξ±] β†’ [Hashable Ξ±] β†’ (Std.DHashMap.Raw Ξ± fun x => Ξ²) β†’ Ξ± β†’ Ξ² β†’ Ξ²
Plausible.Fin.Arbitrary._proof_1
Plausible.Arbitrary
βˆ€ {n : β„•} (__do_lift : β„•), 0 ≀ min __do_lift n
ContinuousMap.instSeminormedRing
Mathlib.Topology.ContinuousMap.Compact
{Ξ± : Type u_1} β†’ [inst : TopologicalSpace Ξ±] β†’ [CompactSpace Ξ±] β†’ {R : Type u_4} β†’ [inst_2 : SeminormedRing R] β†’ SeminormedRing C(Ξ±, R)
Int.negOnePow_one
Mathlib.Algebra.Ring.NegOnePow
Int.negOnePow 1 = -1
BoundedContinuousMapClass.recOn
Mathlib.Topology.ContinuousMap.Bounded.Basic
{F : Type u_2} β†’ {Ξ± : Type u_3} β†’ {Ξ² : Type u_4} β†’ [inst : TopologicalSpace Ξ±] β†’ [inst_1 : PseudoMetricSpace Ξ²] β†’ [inst_2 : FunLike F Ξ± Ξ²] β†’ {motive : BoundedContinuousMapClass F Ξ± Ξ² β†’ Sort u} β†’ (t : BoundedContinuousMapClass F Ξ± Ξ²) β†’ ([toContinuousMapClass : ContinuousMapClass F Ξ± Ξ²] β†’ (map_bounded : βˆ€ (f : F), βˆƒ C, βˆ€ (x y : Ξ±), dist (f x) (f y) ≀ C) β†’ motive β‹―) β†’ motive t
AddCon.liftOnAddUnits._proof_4
Mathlib.GroupTheory.Congruence.Defs
βˆ€ {M : Type u_1} [inst : AddMonoid M] {c : AddCon M} (u : AddUnits c.Quotient), ↑u + u.neg = 0
Nat.descFactorial_pos._simp_1
Mathlib.Data.Nat.Factorial.Basic
βˆ€ {n k : β„•}, (0 < n.descFactorial k) = (k ≀ n)
Encodable.encodeSubtype.eq_1
Mathlib.Logic.Encodable.Basic
βˆ€ {Ξ± : Type u_1} {P : Ξ± β†’ Prop} [encA : Encodable Ξ±] (v : Ξ±) (property : P v), Encodable.encodeSubtype ⟨v, property⟩ = Encodable.encode v
Lean.Meta.AuxLemmas.recOn
Lean.Meta.Tactic.AuxLemma
{motive : Lean.Meta.AuxLemmas β†’ Sort u} β†’ (t : Lean.Meta.AuxLemmas) β†’ ((lemmas : Lean.PHashMap Lean.Meta.AuxLemmaKey (Lean.Name Γ— List Lean.Name)) β†’ motive { lemmas := lemmas }) β†’ motive t
_private.Mathlib.MeasureTheory.Group.Action.0.MeasureTheory.smul_mem_ae._simp_1_1
Mathlib.MeasureTheory.Group.Action
βˆ€ {Ξ± : Type u_1} {F : Type u_3} [inst : FunLike F (Set Ξ±) ENNReal] [inst_1 : MeasureTheory.OuterMeasureClass F Ξ±] {ΞΌ : F} {s : Set Ξ±}, (s ∈ MeasureTheory.ae ΞΌ) = (ΞΌ sᢜ = 0)
_private.Init.Data.Nat.Basic.0.Nat.add_one_ne_zero.match_1_1
Init.Data.Nat.Basic
βˆ€ (n : β„•) (motive : n + 1 = 0 β†’ Prop) (a : n + 1 = 0), motive a
_private.Batteries.Data.List.Lemmas.0.List.replaceF.match_1.splitter
Batteries.Data.List.Lemmas
{Ξ± : Type u_1} β†’ (motive : Option Ξ± β†’ Sort u_2) β†’ (x : Option Ξ±) β†’ (Unit β†’ motive none) β†’ ((a : Ξ±) β†’ motive (some a)) β†’ motive x
Std.DTreeMap.size_diff_le_size_left
Std.Data.DTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t₁ tβ‚‚ : Std.DTreeMap Ξ± Ξ² cmp} [Std.TransCmp cmp], (t₁ \ tβ‚‚).size ≀ t₁.size
UniformSpace.Completion.ring._proof_28
Mathlib.Topology.Algebra.UniformRing
βˆ€ {Ξ± : Type u_1} [inst : Ring Ξ±] [inst_1 : UniformSpace Ξ±] [inst_2 : IsUniformAddGroup Ξ±] (a : UniformSpace.Completion Ξ±), -a + a = 0
Finpartition.ofSetSetoid_parts
Mathlib.Order.Partition.Finpartition
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] (s : Setoid Ξ±) (x : Finset Ξ±) [inst_1 : DecidableRel ⇑s], (Finpartition.ofSetSetoid s x).parts = Finset.image (fun a => {b ∈ x | s a b}) x
IsGreatest.maximal
Mathlib.Order.Minimal
βˆ€ {Ξ± : Type u_2} {x : Ξ±} {s : Set Ξ±} [inst : Preorder Ξ±], IsGreatest s x β†’ Maximal (fun x => x ∈ s) x
Commute.function_commute_mul_left
Mathlib.Algebra.Group.Commute.Basic
βˆ€ {G : Type u_1} [inst : Semigroup G] {a b : G}, Commute a b β†’ Function.Commute (fun x => a * x) fun x => b * x
Valuation.HasExtension.val_map_lt_iff
Mathlib.RingTheory.Valuation.Extension
βˆ€ {R : Type u_1} {A : Type u_2} {Ξ“R : Type u_3} {Ξ“A : Type u_4} [inst : CommRing R] [inst_1 : Ring A] [inst_2 : LinearOrderedCommMonoidWithZero Ξ“R] [inst_3 : LinearOrderedCommMonoidWithZero Ξ“A] [inst_4 : Algebra R A] (vR : Valuation R Ξ“R) (vA : Valuation A Ξ“A) [vR.HasExtension vA] (x y : R), vA ((algebraMap R A) x) < vA ((algebraMap R A) y) ↔ vR x < vR y
CategoryTheory.ObjectProperty.IsSeparating.mono_iff
Mathlib.CategoryTheory.Generator.Basic
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {P : CategoryTheory.ObjectProperty C}, P.IsSeparating β†’ βˆ€ {X Y : C} (f : X ⟢ Y), CategoryTheory.Mono f ↔ βˆ€ (G : C), P G β†’ βˆ€ (g₁ gβ‚‚ : G ⟢ X), CategoryTheory.CategoryStruct.comp g₁ f = CategoryTheory.CategoryStruct.comp gβ‚‚ f β†’ g₁ = gβ‚‚
_private.Mathlib.CategoryTheory.Localization.Triangulated.0.CategoryTheory.Triangulated.Localization.distinguished_cocone_triangle._simp_1_1
Mathlib.CategoryTheory.Localization.Triangulated
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] (self : CategoryTheory.Functor C D) {X Y Z : C} (f : X ⟢ Y) (g : Y ⟢ Z), CategoryTheory.CategoryStruct.comp (self.map f) (self.map g) = self.map (CategoryTheory.CategoryStruct.comp f g)
Std.TreeMap.Raw.minEntry!
Std.Data.TreeMap.Raw.Basic
{Ξ± : Type u} β†’ {Ξ² : Type v} β†’ {cmp : Ξ± β†’ Ξ± β†’ Ordering} β†’ [Inhabited (Ξ± Γ— Ξ²)] β†’ Std.TreeMap.Raw Ξ± Ξ² cmp β†’ Ξ± Γ— Ξ²
_private.Mathlib.NumberTheory.Zsqrtd.Basic.0.Zsqrtd.Nonnegg.match_1.eq_4
Mathlib.NumberTheory.Zsqrtd.Basic
βˆ€ (motive : β„€ β†’ β„€ β†’ Sort u_1) (a a_1 : β„•) (h_1 : (a b : β„•) β†’ motive (Int.ofNat a) (Int.ofNat b)) (h_2 : (a b : β„•) β†’ motive (Int.ofNat a) (Int.negSucc b)) (h_3 : (a b : β„•) β†’ motive (Int.negSucc a) (Int.ofNat b)) (h_4 : (a a_2 : β„•) β†’ motive (Int.negSucc a) (Int.negSucc a_2)), (match Int.negSucc a, Int.negSucc a_1 with | Int.ofNat a, Int.ofNat b => h_1 a b | Int.ofNat a, Int.negSucc b => h_2 a b | Int.negSucc a, Int.ofNat b => h_3 a b | Int.negSucc a, Int.negSucc a_2 => h_4 a a_2) = h_4 a a_1
ArithmeticFunction.natCoe_apply
Mathlib.NumberTheory.ArithmeticFunction.Defs
βˆ€ {R : Type u_1} [inst : AddMonoidWithOne R] {f : ArithmeticFunction β„•} {x : β„•}, ↑f x = ↑(f x)
Equiv.prodEmbeddingDisjointEquivSigmaEmbeddingRestricted
Mathlib.Logic.Equiv.Embedding
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ {Ξ³ : Type u_3} β†’ { f // Disjoint (Set.range ⇑f.1) (Set.range ⇑f.2) } ≃ (f : Ξ± β†ͺ Ξ³) Γ— (Ξ² β†ͺ ↑(Set.range ⇑f)ᢜ)
Module.Basis.SmithNormalForm
Mathlib.LinearAlgebra.FreeModule.PID
{R : Type u_2} β†’ [inst : CommRing R] β†’ {M : Type u_3} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ Submodule R M β†’ Type u_4 β†’ β„• β†’ Type (max (max u_2 u_3) u_4)
Rep.coinvariantsFunctor_hom_ext
Mathlib.RepresentationTheory.Coinvariants
βˆ€ {k G : Type u} [inst : CommRing k] [inst_1 : Monoid G] {A : Rep k G} {M : ModuleCat k} {f g : (Rep.coinvariantsFunctor k G).obj A ⟢ M}, CategoryTheory.CategoryStruct.comp ((Rep.coinvariantsMk k G).app A) f = CategoryTheory.CategoryStruct.comp ((Rep.coinvariantsMk k G).app A) g β†’ f = g
MeasureTheory.eLpNormEssSup_eq_iSup
Mathlib.MeasureTheory.Function.LpSeminorm.Basic
βˆ€ {Ξ± : Type u_1} {m0 : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} {Ξ΅ : Type u_8} [inst : ENorm Ξ΅], (βˆ€ (a : Ξ±), ΞΌ {a} β‰  0) β†’ βˆ€ (f : Ξ± β†’ Ξ΅), MeasureTheory.eLpNormEssSup f ΞΌ = ⨆ a, β€–f aβ€–β‚‘
Topology.WithUpper.ofUpper_le_ofUpper._simp_1
Mathlib.Topology.Order.LowerUpperTopology
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] {x y : Topology.WithUpper Ξ±}, (Topology.WithUpper.ofUpper x ≀ Topology.WithUpper.ofUpper y) = (x ≀ y)
ProbabilityTheory.aemeasurable_of_integrable_exp_mul
Mathlib.Probability.Moments.IntegrableExpMul
βˆ€ {Ξ© : Type u_1} {m : MeasurableSpace Ξ©} {X : Ξ© β†’ ℝ} {ΞΌ : MeasureTheory.Measure Ξ©} {u v : ℝ}, u β‰  v β†’ MeasureTheory.Integrable (fun Ο‰ => Real.exp (u * X Ο‰)) ΞΌ β†’ MeasureTheory.Integrable (fun Ο‰ => Real.exp (v * X Ο‰)) ΞΌ β†’ AEMeasurable X ΞΌ