name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
CategoryTheory.Limits.IsImage.noConfusionType
Mathlib.CategoryTheory.Limits.Shapes.Images
Sort u_1 β†’ {C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {X Y : C} β†’ {f : X ⟢ Y} β†’ {F : CategoryTheory.Limits.MonoFactorisation f} β†’ CategoryTheory.Limits.IsImage F β†’ {C' : Type u} β†’ [inst' : CategoryTheory.Category.{v, u} C'] β†’ {X' Y' : C'} β†’ {f' : X' ⟢ Y'} β†’ {F' : CategoryTheory.Limits.MonoFactorisation f'} β†’ CategoryTheory.Limits.IsImage F' β†’ Sort u_1
CategoryTheory.Pseudofunctor.presheafHom_obj
Mathlib.CategoryTheory.Sites.Descent.IsPrestack
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete Cα΅’α΅–) CategoryTheory.Cat) {S : C} (M N : ↑(F.obj { as := Opposite.op S })) (T : (CategoryTheory.Over S)α΅’α΅–), (F.presheafHom M N).obj T = ((F.map (Opposite.unop T).hom.op.toLoc).toFunctor.obj M ⟢ (F.map (Opposite.unop T).hom.op.toLoc).toFunctor.obj N)
instLTInt8
Init.Data.SInt.Basic
LT Int8
_private.Lean.Meta.Tactic.Grind.EMatch.0.Lean.Meta.Grind.EMatch.getLHS
Lean.Meta.Tactic.Grind.EMatch
Array Lean.Expr β†’ β„• β†’ Lean.MetaM Lean.Expr
CategoryTheory.coeMonad
Mathlib.CategoryTheory.Monad.Basic
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ Coe (CategoryTheory.Monad C) (CategoryTheory.Functor C C)
AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpace_reflectsPullback_of_right
Mathlib.Geometry.RingedSpace.OpenImmersion
βˆ€ {X Y Z : AlgebraicGeometry.LocallyRingedSpace} (f : X ⟢ Z) (g : Y ⟢ Z) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f], CategoryTheory.Limits.ReflectsLimit (CategoryTheory.Limits.cospan g f) (AlgebraicGeometry.LocallyRingedSpace.forgetToSheafedSpace.comp AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace)
CategoryTheory.Functor.CorepresentableBy.ofIsoObj
Mathlib.CategoryTheory.Yoneda
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ {F : CategoryTheory.Functor C (Type w)} β†’ {X Y : C} β†’ F.CorepresentableBy X β†’ (Y β‰… X) β†’ F.CorepresentableBy Y
SymOptionSuccEquiv.decode_inl
Mathlib.Data.Sym.Basic
βˆ€ {Ξ± : Type u_1} {n : β„•} (s : Sym (Option Ξ±) n), SymOptionSuccEquiv.decode (Sum.inl s) = none ::β‚› s
LinearEquiv.compDer._proof_1
Mathlib.RingTheory.Derivation.Basic
βˆ€ {R : Type u_3} {A : Type u_1} {M : Type u_2} [inst : CommSemiring R] [inst_1 : CommSemiring A] [inst_2 : AddCommMonoid M] [inst_3 : Algebra R A] [inst_4 : Module A M] [inst_5 : Module R M] {N : Type u_4} [inst_6 : AddCommMonoid N] [inst_7 : Module A N] [inst_8 : Module R N] [inst_9 : IsScalarTower R A M] [inst_10 : IsScalarTower R A N] (e : M ≃ₗ[A] N) (D : Derivation R A M), (↑e.symm).compDer ((↑e).compDer.toFun D) = D
_private.Std.Data.DHashMap.Internal.AssocList.Lemmas.0.Std.DHashMap.Internal.AssocList.length.eq_1
Std.Data.DHashMap.Internal.AssocList.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} (l : Std.DHashMap.Internal.AssocList Ξ± Ξ²), l.length = Std.DHashMap.Internal.AssocList.foldl (fun n x x_1 => n + 1) 0 l
List.eraseIdx_cons_zero
Init.Data.List.Basic
βˆ€ {Ξ± : Type u_1} {a : Ξ±} {as : List Ξ±}, (a :: as).eraseIdx 0 = as
_private.Mathlib.Algebra.Order.Floor.Semiring.0.Nat.preimage_Ioi._simp_1_1
Mathlib.Algebra.Order.Floor.Semiring
βˆ€ {R : Type u_1} [inst : Semiring R] [inst_1 : LinearOrder R] [inst_2 : FloorSemiring R] {a : R} {n : β„•}, 0 ≀ a β†’ (⌊aβŒ‹β‚Š < n) = (a < ↑n)
IsMulFreimanIso.subset
Mathlib.Combinatorics.Additive.FreimanHom
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : CommMonoid Ξ±] [inst_1 : CommMonoid Ξ²] {A₁ Aβ‚‚ : Set Ξ±} {B₁ Bβ‚‚ : Set Ξ²} {f : Ξ± β†’ Ξ²} {n : β„•}, A₁ βŠ† Aβ‚‚ β†’ IsMulFreimanIso n Aβ‚‚ Bβ‚‚ f β†’ Set.BijOn f A₁ B₁ β†’ IsMulFreimanIso n A₁ B₁ f
CategoryTheory.LocalizerMorphism.inverts
Mathlib.CategoryTheory.Localization.LocalizerMorphism
βˆ€ {C₁ : Type u₁} {Cβ‚‚ : Type uβ‚‚} {Dβ‚‚ : Type uβ‚…} [inst : CategoryTheory.Category.{v₁, u₁} C₁] [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} Cβ‚‚] [inst_2 : CategoryTheory.Category.{vβ‚…, uβ‚…} Dβ‚‚] {W₁ : CategoryTheory.MorphismProperty C₁} {Wβ‚‚ : CategoryTheory.MorphismProperty Cβ‚‚} (Ξ¦ : CategoryTheory.LocalizerMorphism W₁ Wβ‚‚) (Lβ‚‚ : CategoryTheory.Functor Cβ‚‚ Dβ‚‚) [Lβ‚‚.IsLocalization Wβ‚‚], W₁.IsInvertedBy (Ξ¦.functor.comp Lβ‚‚)
GromovHausdorff.instMetricSpaceGHSpace._proof_13
Mathlib.Topology.MetricSpace.GromovHausdorff
(Bornology.cobounded GromovHausdorff.GHSpace).sets = (Bornology.cobounded GromovHausdorff.GHSpace).sets
Lean.Lsp.DidChangeTextDocumentParams._sizeOf_1
Lean.Data.Lsp.TextSync
Lean.Lsp.DidChangeTextDocumentParams β†’ β„•
MvPowerSeries.monomial_zero_one
Mathlib.RingTheory.MvPowerSeries.Basic
βˆ€ {Οƒ : Type u_1} {R : Type u_2} [inst : Semiring R], (MvPowerSeries.monomial 0) 1 = 1
CFC.rpow_eq_cfc_real._auto_1
Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.Rpow.Basic
Lean.Syntax
_private.Mathlib.FieldTheory.LinearDisjoint.0.IntermediateField.LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic.match_1_1
Mathlib.FieldTheory.LinearDisjoint
βˆ€ {F : Type u_2} {E : Type u_1} [inst : Field F] [inst_1 : Field E] [inst_2 : Algebra F E] {A : IntermediateField F E} {L : Type u_3} [inst_3 : Field L] [inst_4 : Algebra F L] [inst_5 : Algebra L E] [inst_6 : IsScalarTower F L E] (motive : β†₯(IntermediateField.extendScalars β‹―) β†’ Prop) (x : β†₯(IntermediateField.extendScalars β‹―)), (βˆ€ (x : E) (hx : x ∈ IntermediateField.extendScalars β‹―), motive ⟨x, hx⟩) β†’ motive x
_private.Std.Time.Time.PlainTime.0.Std.Time.instDecidableEqPlainTime.decEq._proof_3
Std.Time.Time.PlainTime
βˆ€ (a : Std.Time.Hour.Ordinal) (a_1 : Std.Time.Minute.Ordinal) (a_2 : Std.Time.Second.Ordinal true) (a_3 : Std.Time.Nanosecond.Ordinal) (b : Std.Time.Second.Ordinal true) (b_1 : Std.Time.Nanosecond.Ordinal), Β¬a_2 = b β†’ { hour := a, minute := a_1, second := a_2, nanosecond := a_3 } = { hour := a, minute := a_1, second := b, nanosecond := b_1 } β†’ False
instCompleteLinearOrderWithBotENat
Mathlib.Data.ENat.Lattice
CompleteLinearOrder (WithBot β„•βˆž)
Homeomorph.setCongr
Mathlib.Topology.Homeomorph.Lemmas
{X : Type u_1} β†’ [inst : TopologicalSpace X] β†’ {s t : Set X} β†’ s = t β†’ ↑s β‰ƒβ‚œ ↑t
MulAut.instGroup._proof_3
Mathlib.Algebra.Group.End
βˆ€ (M : Type u_1) [inst : Mul M] (a b : MulAut M), a / b = a / b
AlgebraNorm.isScalarTower_restriction._proof_4
Mathlib.Analysis.Normed.Unbundled.AlgebraNorm
βˆ€ {R : Type u_2} [inst : SeminormedCommRing R] {S : Type u_1} [inst_1 : Ring S] [inst_2 : Algebra R S] {A : Type u_3} [inst_3 : CommRing A] [inst_4 : Algebra A S] (f : AlgebraNorm R S) (x : A), f ((algebraMap A S) (-x)) = f ((algebraMap A S) x)
_private.Mathlib.Data.DFinsupp.BigOperators.0.DFinsupp.sumAddHom._simp_1
Mathlib.Data.DFinsupp.BigOperators
βˆ€ {Ξ± : Type u_1} {a : Ξ±} {s t : Multiset Ξ±}, (a ∈ s + t) = (a ∈ s ∨ a ∈ t)
Real.sigmoid_neg
Mathlib.Analysis.SpecialFunctions.Sigmoid
βˆ€ (x : ℝ), (-x).sigmoid = 1 - x.sigmoid
PFun.core
Mathlib.Data.PFun
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ (Ξ± β†’. Ξ²) β†’ Set Ξ² β†’ Set Ξ±
SemiNormedGrp₁.instHasCokernels
Mathlib.Analysis.Normed.Group.SemiNormedGrp.Kernels
CategoryTheory.Limits.HasCokernels SemiNormedGrp₁
Lean.DefinitionSafety._sizeOf_inst
Lean.Declaration
SizeOf Lean.DefinitionSafety
CategoryTheory.nerve.Ξ΄β‚‚_two
Mathlib.AlgebraicTopology.SimplicialSet.Nerve
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] (x : CategoryTheory.ComposableArrows C 2), CategoryTheory.SimplicialObject.Ξ΄ (CategoryTheory.nerve C) 2 x = CategoryTheory.ComposableArrows.mk₁ (x.map' 0 1 CategoryTheory.nerve.Ξ΄β‚‚_two._proof_2 CategoryTheory.nerve.Ξ΄β‚‚_two._proof_4)
String.Pos.prev._proof_1
Init.Data.String.Basic
βˆ€ {s : String} (pos : s.Pos), pos β‰  s.startPos β†’ String.Pos.ofToSlice pos.toSlice β‰  String.Pos.ofToSlice s.toSlice.startPos
Array.getElem?_map
Init.Data.Array.Lemmas
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Ξ± β†’ Ξ²} {xs : Array Ξ±} {i : β„•}, (Array.map f xs)[i]? = Option.map f xs[i]?
TopologicalSpace.Opens.CompleteCopy.instMetricSpace._proof_4
Mathlib.Topology.MetricSpace.Polish
βˆ€ {Ξ± : Type u_1} [inst : MetricSpace Ξ±] {s : TopologicalSpace.Opens Ξ±} (t : Set s.CompleteCopy), IsOpen t ↔ βˆ€ x ∈ t, βˆƒ Ξ΅ > 0, βˆ€ (y : s.CompleteCopy), dist x y < Ξ΅ β†’ y ∈ t
Mathlib.Tactic.CC.ACEntry.RRHSOccs
Mathlib.Tactic.CC.Datatypes
Mathlib.Tactic.CC.ACEntry β†’ Mathlib.Tactic.CC.ACAppsSet
CategoryTheory.GradedObject.Monoidal.pentagon
Mathlib.CategoryTheory.GradedObject.Monoidal
βˆ€ {I : Type u} [inst : AddMonoid I] {C : Type u_1} [inst_1 : CategoryTheory.Category.{v_1, u_1} C] [inst_2 : CategoryTheory.MonoidalCategory C] (X₁ Xβ‚‚ X₃ Xβ‚„ : CategoryTheory.GradedObject I C) [inst_3 : X₁.HasTensor Xβ‚‚] [inst_4 : Xβ‚‚.HasTensor X₃] [inst_5 : X₃.HasTensor Xβ‚„] [inst_6 : (CategoryTheory.GradedObject.Monoidal.tensorObj X₁ Xβ‚‚).HasTensor X₃] [inst_7 : X₁.HasTensor (CategoryTheory.GradedObject.Monoidal.tensorObj Xβ‚‚ X₃)] [inst_8 : (CategoryTheory.GradedObject.Monoidal.tensorObj Xβ‚‚ X₃).HasTensor Xβ‚„] [inst_9 : Xβ‚‚.HasTensor (CategoryTheory.GradedObject.Monoidal.tensorObj X₃ Xβ‚„)] [inst_10 : (CategoryTheory.GradedObject.Monoidal.tensorObj (CategoryTheory.GradedObject.Monoidal.tensorObj X₁ Xβ‚‚) X₃).HasTensor Xβ‚„] [inst_11 : (CategoryTheory.GradedObject.Monoidal.tensorObj X₁ (CategoryTheory.GradedObject.Monoidal.tensorObj Xβ‚‚ X₃)).HasTensor Xβ‚„] [inst_12 : X₁.HasTensor (CategoryTheory.GradedObject.Monoidal.tensorObj (CategoryTheory.GradedObject.Monoidal.tensorObj Xβ‚‚ X₃) Xβ‚„)] [inst_13 : X₁.HasTensor (CategoryTheory.GradedObject.Monoidal.tensorObj Xβ‚‚ (CategoryTheory.GradedObject.Monoidal.tensorObj X₃ Xβ‚„))] [inst_14 : (CategoryTheory.GradedObject.Monoidal.tensorObj X₁ Xβ‚‚).HasTensor (CategoryTheory.GradedObject.Monoidal.tensorObj X₃ Xβ‚„)] [inst_15 : X₁.HasGoodTensor₁₂Tensor Xβ‚‚ X₃] [inst_16 : X₁.HasGoodTensorTensor₂₃ Xβ‚‚ X₃] [inst_17 : X₁.HasGoodTensor₁₂Tensor (CategoryTheory.GradedObject.Monoidal.tensorObj Xβ‚‚ X₃) Xβ‚„] [inst_18 : X₁.HasGoodTensorTensor₂₃ (CategoryTheory.GradedObject.Monoidal.tensorObj Xβ‚‚ X₃) Xβ‚„] [inst_19 : Xβ‚‚.HasGoodTensor₁₂Tensor X₃ Xβ‚„] [inst_20 : Xβ‚‚.HasGoodTensorTensor₂₃ X₃ Xβ‚„] [inst_21 : (CategoryTheory.GradedObject.Monoidal.tensorObj X₁ Xβ‚‚).HasGoodTensor₁₂Tensor X₃ Xβ‚„] [inst_22 : (CategoryTheory.GradedObject.Monoidal.tensorObj X₁ Xβ‚‚).HasGoodTensorTensor₂₃ X₃ Xβ‚„] [inst_23 : X₁.HasGoodTensor₁₂Tensor Xβ‚‚ (CategoryTheory.GradedObject.Monoidal.tensorObj X₃ Xβ‚„)] [inst_24 : X₁.HasGoodTensorTensor₂₃ Xβ‚‚ (CategoryTheory.GradedObject.Monoidal.tensorObj X₃ Xβ‚„)] [X₁.HasTensorβ‚„ObjExt Xβ‚‚ X₃ Xβ‚„], CategoryTheory.CategoryStruct.comp (CategoryTheory.GradedObject.Monoidal.tensorHom (CategoryTheory.GradedObject.Monoidal.associator X₁ Xβ‚‚ X₃).hom (CategoryTheory.CategoryStruct.id Xβ‚„)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.GradedObject.Monoidal.associator X₁ (CategoryTheory.GradedObject.Monoidal.tensorObj Xβ‚‚ X₃) Xβ‚„).hom (CategoryTheory.GradedObject.Monoidal.tensorHom (CategoryTheory.CategoryStruct.id X₁) (CategoryTheory.GradedObject.Monoidal.associator Xβ‚‚ X₃ Xβ‚„).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.GradedObject.Monoidal.associator (CategoryTheory.GradedObject.Monoidal.tensorObj X₁ Xβ‚‚) X₃ Xβ‚„).hom (CategoryTheory.GradedObject.Monoidal.associator X₁ Xβ‚‚ (CategoryTheory.GradedObject.Monoidal.tensorObj X₃ Xβ‚„)).hom
_private.Mathlib.Geometry.Manifold.IsManifold.InteriorBoundary.0.ModelWithCorners.isBoundaryPoint_iff_isBoundaryPoint_val._simp_1_1
Mathlib.Geometry.Manifold.IsManifold.InteriorBoundary
βˆ€ {a b : Prop}, (Β¬a ↔ Β¬b) = (a ↔ b)
Complex.ofReal_mul'
Mathlib.Data.Complex.Basic
βˆ€ (r : ℝ) (z : β„‚), ↑r * z = { re := r * z.re, im := r * z.im }
MvQPF.WEquiv.below.ind
Mathlib.Data.QPF.Multivariate.Constructions.Fix
βˆ€ {n : β„•} {F : TypeVec.{u} (n + 1) β†’ Type u} [q : MvQPF F] {Ξ± : TypeVec.{u} n} {motive : (a a_1 : (MvQPF.P F).W Ξ±) β†’ MvQPF.WEquiv a a_1 β†’ Prop} (a : (MvQPF.P F).A) (f' : ((MvQPF.P F).drop.B a).Arrow Ξ±) (fβ‚€ f₁ : (MvQPF.P F).last.B a β†’ (MvQPF.P F).W Ξ±) (a_1 : βˆ€ (x : (MvQPF.P F).last.B a), MvQPF.WEquiv (fβ‚€ x) (f₁ x)), (βˆ€ (x : (MvQPF.P F).last.B a), MvQPF.WEquiv.below β‹―) β†’ (βˆ€ (x : (MvQPF.P F).last.B a), motive (fβ‚€ x) (f₁ x) β‹―) β†’ MvQPF.WEquiv.below β‹―
Cardinal.ord_zero
Mathlib.SetTheory.Ordinal.Basic
Cardinal.ord 0 = 0
Lean.Lsp.instFromJsonVersionedTextDocumentIdentifier.fromJson
Lean.Data.Lsp.Basic
Lean.Json β†’ Except String Lean.Lsp.VersionedTextDocumentIdentifier
Lean.Parser.Term.syntheticHole._regBuiltin.Lean.Parser.Term.syntheticHole.docString_3
Lean.Parser.Term.Basic
IO Unit
nhds_translation_mul_invβ‚€
Mathlib.Topology.Algebra.GroupWithZero
βˆ€ {Gβ‚€ : Type u_3} [inst : TopologicalSpace Gβ‚€] [inst_1 : GroupWithZero Gβ‚€] [ContinuousMul Gβ‚€] {a : Gβ‚€}, a β‰  0 β†’ Filter.comap (fun x => x * a⁻¹) (nhds 1) = nhds a
Polynomial.IsDistinguishedAt.algEquivQuotient._proof_4
Mathlib.RingTheory.PowerSeries.WeierstrassPreparation
βˆ€ {A : Type u_1} [inst : CommRing A] {g : Polynomial A} {I : Ideal A} (H : g.IsDistinguishedAt I) [inst_1 : IsAdicComplete I A] (f : Polynomial A β§Έ Ideal.span {g}), (⇑(Ideal.Quotient.mk (Ideal.span {g})) ∘ ⇑⋯.mod') ((↑↑(Ideal.quotientMapₐ (Ideal.span {↑g}) (Polynomial.coeToPowerSeries.algHom A) β‹―).toRingHom).toFun f) = f
Module.Relations.Solution.IsPresentationCore.noConfusion
Mathlib.Algebra.Module.Presentation.Basic
{P : Sort u_1} β†’ {A : Type u} β†’ {inst : Ring A} β†’ {relations : Module.Relations A} β†’ {M : Type v} β†’ {inst_1 : AddCommGroup M} β†’ {inst_2 : Module A M} β†’ {solution : relations.Solution M} β†’ {t : solution.IsPresentationCore} β†’ {A' : Type u} β†’ {inst' : Ring A'} β†’ {relations' : Module.Relations A'} β†’ {M' : Type v} β†’ {inst'_1 : AddCommGroup M'} β†’ {inst'_2 : Module A' M'} β†’ {solution' : relations'.Solution M'} β†’ {t' : solution'.IsPresentationCore} β†’ A = A' β†’ inst ≍ inst' β†’ relations ≍ relations' β†’ M = M' β†’ inst_1 ≍ inst'_1 β†’ inst_2 ≍ inst'_2 β†’ solution ≍ solution' β†’ t ≍ t' β†’ Module.Relations.Solution.IsPresentationCore.noConfusionType P t t'
IsMinFilter.min
Mathlib.Order.Filter.Extr
βˆ€ {Ξ± : Type u} {Ξ² : Type v} [inst : LinearOrder Ξ²] {f g : Ξ± β†’ Ξ²} {a : Ξ±} {l : Filter Ξ±}, IsMinFilter f l a β†’ IsMinFilter g l a β†’ IsMinFilter (fun x => min (f x) (g x)) l a
Equiv.locallyFinite_comp_iff
Mathlib.Topology.LocallyFinite
βˆ€ {ΞΉ : Type u_1} {ΞΉ' : Type u_2} {X : Type u_4} [inst : TopologicalSpace X] {f : ΞΉ β†’ Set X} (e : ΞΉ' ≃ ΞΉ), LocallyFinite (f ∘ ⇑e) ↔ LocallyFinite f
CategoryTheory.left_comp_retraction
Mathlib.CategoryTheory.Limits.Shapes.Reflexive
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {A B : C} (f g : A ⟢ B) [inst_1 : CategoryTheory.IsCoreflexivePair f g], CategoryTheory.CategoryStruct.comp f (CategoryTheory.commonRetraction f g) = CategoryTheory.CategoryStruct.id A
_private.Mathlib.Tactic.CC.MkProof.0.Mathlib.Tactic.CC.CCM.mkCongrProofCore._sparseCasesOn_3
Mathlib.Tactic.CC.MkProof
{motive : Lean.Meta.CongrArgKind β†’ Sort u} β†’ (t : Lean.Meta.CongrArgKind) β†’ motive Lean.Meta.CongrArgKind.heq β†’ (Nat.hasNotBit 16 t.ctorIdx β†’ motive t) β†’ motive t
CategoryTheory.GrothendieckTopology.Subcanonical.recOn
Mathlib.CategoryTheory.Sites.Canonical
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {J : CategoryTheory.GrothendieckTopology C} β†’ {motive : J.Subcanonical β†’ Sort u_1} β†’ (t : J.Subcanonical) β†’ ((le_canonical : J ≀ CategoryTheory.Sheaf.canonicalTopology C) β†’ motive β‹―) β†’ motive t
Polynomial.smul_eq_C_mul
Mathlib.Algebra.Polynomial.Coeff
βˆ€ {R : Type u} [inst : Semiring R] {p : Polynomial R} (a : R), a β€’ p = Polynomial.C a * p
List.fst_mem_of_mem_zipIdx
Init.Data.List.Nat.Range
βˆ€ {Ξ± : Type u_1} {x : Ξ± Γ— β„•} {l : List Ξ±} {k : β„•}, x ∈ l.zipIdx k β†’ x.1 ∈ l
Turing.TM2.Stmt.pop.elim
Mathlib.Computability.TuringMachine
{K : Type u_1} β†’ {Ξ“ : K β†’ Type u_2} β†’ {Ξ› : Type u_3} β†’ {Οƒ : Type u_4} β†’ {motive : Turing.TM2.Stmt Ξ“ Ξ› Οƒ β†’ Sort u} β†’ (t : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ t.ctorIdx = 2 β†’ ((k : K) β†’ (a : Οƒ β†’ Option (Ξ“ k) β†’ Οƒ) β†’ (a_1 : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ motive (Turing.TM2.Stmt.pop k a a_1)) β†’ motive t
Subsemiring.gi
Mathlib.Algebra.Ring.Subsemiring.Basic
(R : Type u) β†’ [inst : NonAssocSemiring R] β†’ GaloisInsertion Subsemiring.closure SetLike.coe
CategoryTheory.Limits.colimitQuotientCoproduct._proof_1
Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers
βˆ€ {C : Type u_3} [inst : CategoryTheory.Category.{u_2, u_3} C] {J : Type u_1} [inst_1 : CategoryTheory.SmallCategory J] [CategoryTheory.Limits.HasColimitsOfSize.{u_1, u_1, u_2, u_3} C] (F : CategoryTheory.Functor J C), CategoryTheory.Limits.HasColimit (CategoryTheory.Discrete.functor fun j => F.obj j)
AffineSubspace.sOppSide_iff_exists_left
Mathlib.Analysis.Convex.Side
βˆ€ {R : Type u_1} {V : Type u_2} {P : Type u_4} [inst : Field R] [inst_1 : LinearOrder R] [inst_2 : IsStrictOrderedRing R] [inst_3 : AddCommGroup V] [inst_4 : Module R V] [inst_5 : AddTorsor V P] {s : AffineSubspace R P} {x y p₁ : P}, p₁ ∈ s β†’ (s.SOppSide x y ↔ x βˆ‰ s ∧ y βˆ‰ s ∧ βˆƒ pβ‚‚ ∈ s, SameRay R (x -α΅₯ p₁) (pβ‚‚ -α΅₯ y))
MvPolynomial.rename_expand
Mathlib.Algebra.MvPolynomial.Expand
βˆ€ {Οƒ : Type u_1} {Ο„ : Type u_2} {R : Type u_3} [inst : CommSemiring R] (f : Οƒ β†’ Ο„) (p : β„•) (Ο† : MvPolynomial Οƒ R), (MvPolynomial.rename f) ((MvPolynomial.expand p) Ο†) = (MvPolynomial.expand p) ((MvPolynomial.rename f) Ο†)
MonovaryOn.subset
Mathlib.Order.Monotone.Monovary
βˆ€ {ΞΉ : Type u_1} {Ξ± : Type u_3} {Ξ² : Type u_4} [inst : Preorder Ξ±] [inst_1 : Preorder Ξ²] {f : ΞΉ β†’ Ξ±} {g : ΞΉ β†’ Ξ²} {s t : Set ΞΉ}, s βŠ† t β†’ MonovaryOn f g t β†’ MonovaryOn f g s
HasProdUniformly.hasProdLocallyUniformly
Mathlib.Topology.Algebra.InfiniteSum.UniformOn
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {ΞΉ : Type u_3} [inst : CommMonoid Ξ±] {f : ΞΉ β†’ Ξ² β†’ Ξ±} {g : Ξ² β†’ Ξ±} [inst_1 : UniformSpace Ξ±] [inst_2 : TopologicalSpace Ξ²], HasProdUniformly f g β†’ HasProdLocallyUniformly f g
gauge_gaugeRescale_le
Mathlib.Analysis.Convex.GaugeRescale
βˆ€ {E : Type u_1} [inst : AddCommGroup E] [inst_1 : Module ℝ E] (s t : Set E) (x : E), gauge t (gaugeRescale s t x) ≀ gauge s x
Module.Invertible.toSubmodule
Mathlib.RingTheory.PicardGroup
(R : Type u) β†’ (M : Type v) β†’ (A : Type u_4) β†’ [inst : CommSemiring R] β†’ [inst_1 : CommSemiring A] β†’ [inst_2 : AddCommMonoid M] β†’ [inst_3 : Algebra R A] β†’ [inst_4 : Module R M] β†’ [Module.Invertible R M] β†’ [Module.Free A (TensorProduct R A M)] β†’ Submodule R A
_private.Mathlib.Computability.PostTuringMachine.0.Turing.TM0to1.tr.match_3.eq_1
Mathlib.Computability.PostTuringMachine
βˆ€ {Ξ“ : Type u_1} {Ξ› : Type u_2} (motive : Turing.TM0to1.Ξ›' Ξ“ Ξ› β†’ Sort u_3) (q : Ξ›) (h_1 : (q : Ξ›) β†’ motive (Turing.TM0to1.Ξ›'.normal q)) (h_2 : (d : Turing.Dir) β†’ (q : Ξ›) β†’ motive (Turing.TM0to1.Ξ›'.act (Turing.TM0.Stmt.move d) q)) (h_3 : (a : Ξ“) β†’ (q : Ξ›) β†’ motive (Turing.TM0to1.Ξ›'.act (Turing.TM0.Stmt.write a) q)), (match Turing.TM0to1.Ξ›'.normal q with | Turing.TM0to1.Ξ›'.normal q => h_1 q | Turing.TM0to1.Ξ›'.act (Turing.TM0.Stmt.move d) q => h_2 d q | Turing.TM0to1.Ξ›'.act (Turing.TM0.Stmt.write a) q => h_3 a q) = h_1 q
Nat.instCommutativeHAdd
Init.Data.Nat.Basic
Std.Commutative fun x1 x2 => x1 + x2
aeconst_of_dense_setOf_preimage_vadd_ae
Mathlib.Dynamics.Ergodic.Action.OfMinimal
βˆ€ {M : Type u_1} [inst : TopologicalSpace M] {X : Type u_2} [inst_1 : TopologicalSpace X] [R1Space X] [inst_3 : MeasurableSpace X] [BorelSpace X] [inst_5 : VAdd M X] [ContinuousVAdd M X] {ΞΌ : MeasureTheory.Measure X} [MeasureTheory.IsFiniteMeasure ΞΌ] [ΞΌ.InnerRegular] [ErgodicVAdd M X ΞΌ] {s : Set X}, MeasureTheory.NullMeasurableSet s ΞΌ β†’ Dense {g | (fun x => g +α΅₯ x) ⁻¹' s =ᡐ[ΞΌ] s} β†’ Filter.EventuallyConst s (MeasureTheory.ae ΞΌ)
CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_hom_app_eq._proof_4
Mathlib.CategoryTheory.Triangulated.Opposite.Basic
βˆ€ (m n p : β„€), autoParam (m + n = p) CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_hom_app_eq._auto_1 β†’ n + m = p
Lean.Meta.Simp.ConfigCtx.iota._inherited_default
Init.MetaTypes
Bool
Std.TreeMap.getKey_maxKey!
Std.Data.TreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.TreeMap Ξ± Ξ² cmp} [Std.TransCmp cmp] [inst : Inhabited Ξ±] {hc : t.maxKey! ∈ t}, t.getKey t.maxKey! hc = t.maxKey!
AdjoinRoot.evalβ‚‚_root
Mathlib.RingTheory.AdjoinRoot
βˆ€ {R : Type u_1} [inst : CommRing R] (f : Polynomial R), Polynomial.evalβ‚‚ (AdjoinRoot.of f) (AdjoinRoot.root f) f = 0
IsDedekindDomain.HeightOneSpectrum.ofPrime
Mathlib.RingTheory.DedekindDomain.Ideal.Lemmas
{R : Type u_1} β†’ [inst : CommRing R] β†’ [IsDedekindDomain R] β†’ {p : Ideal R} β†’ Prime p β†’ IsDedekindDomain.HeightOneSpectrum R
_private.Lean.Elab.PreDefinition.Eqns.0.Lean.Elab.Eqns.removeUnusedEqnHypotheses.go._sparseCasesOn_3
Lean.Elab.PreDefinition.Eqns
{motive : Lean.Expr β†’ Sort u} β†’ (t : Lean.Expr) β†’ ((binderName : Lean.Name) β†’ (binderType body : Lean.Expr) β†’ (binderInfo : Lean.BinderInfo) β†’ motive (Lean.Expr.lam binderName binderType body binderInfo)) β†’ (Nat.hasNotBit 64 t.ctorIdx β†’ motive t) β†’ motive t
CategoryTheory.Limits.PreservesColimitsOfSize.preservesFiniteColimits
Mathlib.CategoryTheory.Limits.Preserves.Finite
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] (F : CategoryTheory.Functor C D) [CategoryTheory.Limits.PreservesColimitsOfSize.{w, wβ‚‚, v₁, vβ‚‚, u₁, uβ‚‚} F], CategoryTheory.Limits.PreservesFiniteColimits F
_private.Lean.Elab.Tactic.BVDecide.Frontend.Normalize.AC.0.Lean.Elab.Tactic.BVDecide.Frontend.Normalize.VarStateM.computeCoefficients.go
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.AC
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Op β†’ Lean.Elab.Tactic.BVDecide.Frontend.Normalize.CoefficientsMap β†’ Lean.Expr β†’ Lean.Elab.Tactic.BVDecide.Frontend.Normalize.VarStateM Lean.Elab.Tactic.BVDecide.Frontend.Normalize.CoefficientsMap
_private.Init.Data.BitVec.Lemmas.0.BitVec.getMsbD_rotateLeft_of_lt._proof_1_1
Init.Data.BitVec.Lemmas
βˆ€ {r n : β„•} (w : β„•), r < w + 1 β†’ n < w + 1 - r β†’ Β¬r + n < w + 1 β†’ False
Vector.find?.eq_1
Init.Data.Vector.Lemmas
βˆ€ {n : β„•} {Ξ± : Type} (f : Ξ± β†’ Bool) (as : Vector Ξ± n), Vector.find? f as = Array.find? f as.toArray
Filter.sup_limsup
Mathlib.Order.LiminfLimsup
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : CompleteDistribLattice Ξ±] {f : Filter Ξ²} {u : Ξ² β†’ Ξ±} [f.NeBot] (a : Ξ±), a βŠ” Filter.limsup u f = Filter.limsup (fun x => a βŠ” u x) f
SSet.RelativeMorphism.HomotopyClass
Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} β†’ (A : X.Subcomplex) β†’ (B : Y.Subcomplex) β†’ (A.toSSet ⟢ B.toSSet) β†’ Type u
_private.Lean.Language.Basic.0.Lean.Language.SnapshotTree.forM.match_1
Lean.Language.Basic
(motive : Lean.Language.SnapshotTree β†’ Sort u_1) β†’ (s : Lean.Language.SnapshotTree) β†’ ((element : Lean.Language.Snapshot) β†’ (children : Array (Lean.Language.SnapshotTask Lean.Language.SnapshotTree)) β†’ motive { element := element, children := children }) β†’ motive s
MonCat.sectionsSubmonoid
Mathlib.Algebra.Category.MonCat.Limits
{J : Type v} β†’ [inst : CategoryTheory.Category.{w, v} J] β†’ (F : CategoryTheory.Functor J MonCat) β†’ Submonoid ((j : J) β†’ ↑(F.obj j))
Set.fintypeProd
Mathlib.Data.Finite.Prod
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ (s : Set Ξ±) β†’ (t : Set Ξ²) β†’ [Fintype ↑s] β†’ [Fintype ↑t] β†’ Fintype ↑(s Γ—Λ’ t)
_private.Init.Data.UInt.Bitwise.0.UInt64.neg_one_shiftLeft_or_shiftLeft._simp_1_1
Init.Data.UInt.Bitwise
βˆ€ {a b c : UInt64}, a <<< c ||| b <<< c = (a ||| b) <<< c
CategoryTheory.Localization.induction_structuredArrow
Mathlib.CategoryTheory.Localization.StructuredArrow
βˆ€ {C : Type u_1} {D : Type u_2} [inst : CategoryTheory.Category.{v_1, u_1} C] [inst_1 : CategoryTheory.Category.{v_2, u_2} D] (L : CategoryTheory.Functor C D) (W : CategoryTheory.MorphismProperty C) [inst_2 : L.IsLocalization W] {X : C} (P : CategoryTheory.StructuredArrow (L.obj X) L β†’ Prop), P (CategoryTheory.StructuredArrow.mk (CategoryTheory.CategoryStruct.id (L.obj X))) β†’ (βˆ€ ⦃Y₁ Yβ‚‚ : C⦄ (f : Y₁ ⟢ Yβ‚‚) (Ο† : L.obj X ⟢ L.obj Y₁), P (CategoryTheory.StructuredArrow.mk Ο†) β†’ P (CategoryTheory.StructuredArrow.mk (CategoryTheory.CategoryStruct.comp Ο† (L.map f)))) β†’ (βˆ€ ⦃Y₁ Yβ‚‚ : C⦄ (w : Y₁ ⟢ Yβ‚‚) (hw : W w) (Ο† : L.obj X ⟢ L.obj Yβ‚‚), P (CategoryTheory.StructuredArrow.mk Ο†) β†’ P (CategoryTheory.StructuredArrow.mk (CategoryTheory.CategoryStruct.comp Ο† (CategoryTheory.Localization.isoOfHom L W w hw).inv))) β†’ βˆ€ (g : CategoryTheory.StructuredArrow (L.obj X) L), P g
_private.Init.Data.Nat.Power2.0.Nat.isPowerOfTwo_nextPowerOfTwo.isPowerOfTwo_go._unary
Init.Data.Nat.Power2
βˆ€ (n : β„•) (_x : (power : β„•) Γ—' (_ : power > 0) Γ—' power.isPowerOfTwo), (Nat.nextPowerOfTwo.go✝ n _x.1 β‹―).isPowerOfTwo
Lean.Elab.DefViewElabHeader.noConfusion
Lean.Elab.MutualDef
{P : Sort u} β†’ {t t' : Lean.Elab.DefViewElabHeader} β†’ t = t' β†’ Lean.Elab.DefViewElabHeader.noConfusionType P t t'
pow_mulLeftLinearMap
Mathlib.Data.Matrix.Bilinear
βˆ€ {m : Type u_2} {n : Type u_3} {R : Type u_5} {A : Type u_6} [inst : Fintype m] [inst_1 : DecidableEq m] [inst_2 : Semiring R] [inst_3 : Semiring A] [inst_4 : Module R A] [inst_5 : SMulCommClass R A A] (a : Matrix m m A) (k : β„•), mulLeftLinearMap n R a ^ k = mulLeftLinearMap n R (a ^ k)
Lean.Compiler.CSimp.Entry.mk.noConfusion
Lean.Compiler.CSimpAttr
{P : Sort u} β†’ {fromDeclName toDeclName thmName fromDeclName' toDeclName' thmName' : Lean.Name} β†’ { fromDeclName := fromDeclName, toDeclName := toDeclName, thmName := thmName } = { fromDeclName := fromDeclName', toDeclName := toDeclName', thmName := thmName' } β†’ (fromDeclName = fromDeclName' β†’ toDeclName = toDeclName' β†’ thmName = thmName' β†’ P) β†’ P
Lean.Meta.Simp.SimprocQ
Qq.Simp
Type
DirectLimit.Ring.hom_ext
Mathlib.Algebra.Colimit.DirectLimit
βˆ€ {ΞΉ : Type u_2} [inst : Preorder ΞΉ] {G : ΞΉ β†’ Type u_3} {T : ⦃i j : ι⦄ β†’ i ≀ j β†’ Type u_4} {f : (x x_1 : ΞΉ) β†’ (h : x ≀ x_1) β†’ T h} [inst_1 : (i j : ΞΉ) β†’ (h : i ≀ j) β†’ FunLike (T h) (G i) (G j)] [inst_2 : DirectedSystem G fun x1 x2 x3 => ⇑(f x1 x2 x3)] [inst_3 : IsDirectedOrder ΞΉ] [inst_4 : (i : ΞΉ) β†’ NonAssocSemiring (G i)] [inst_5 : βˆ€ (i j : ΞΉ) (h : i ≀ j), RingHomClass (T h) (G i) (G j)] [inst_6 : Nonempty ΞΉ] (P : Type u_5) [inst_7 : NonAssocSemiring P] {g₁ gβ‚‚ : DirectLimit G f β†’+* P}, (βˆ€ (i : ΞΉ), g₁.comp (DirectLimit.Ring.of G f i) = gβ‚‚.comp (DirectLimit.Ring.of G f i)) β†’ g₁ = gβ‚‚
MeasureTheory.Submartingale.stoppedAbove
Mathlib.Probability.Martingale.BorelCantelli
βˆ€ {Ξ© : Type u_1} {m0 : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} {β„± : MeasureTheory.Filtration β„• m0} {f : β„• β†’ Ξ© β†’ ℝ} [MeasureTheory.IsFiniteMeasure ΞΌ], MeasureTheory.Submartingale f β„± ΞΌ β†’ βˆ€ (r : ℝ), MeasureTheory.Submartingale (MeasureTheory.stoppedAbove f r) β„± ΞΌ
CategoryTheory.MorphismProperty.HasPullbacksAlong.hasPullback
Mathlib.CategoryTheory.MorphismProperty.Limits
βˆ€ {C : Type u} {inst : CategoryTheory.Category.{v, u} C} {P : CategoryTheory.MorphismProperty C} {X Y : C} {f : X ⟢ Y} [self : P.HasPullbacksAlong f] {W : C} (g : W ⟢ Y), P g β†’ CategoryTheory.Limits.HasPullback g f
_private.Lean.Elab.BuiltinTerm.0.Lean.Elab.Term.elabStrLit.match_1
Lean.Elab.BuiltinTerm
(motive : Option String β†’ Sort u_1) β†’ (x : Option String) β†’ ((val : String) β†’ motive (some val)) β†’ (Unit β†’ motive none) β†’ motive x
_private.Mathlib.Data.Nat.Factorial.Basic.0.Nat.one_ascFactorial.match_1_1
Mathlib.Data.Nat.Factorial.Basic
βˆ€ (motive : β„• β†’ Prop) (x : β„•), (βˆ€ (a : Unit), motive 0) β†’ (βˆ€ (k : β„•), motive k.succ) β†’ motive x
CategoryTheory.InitiallySmall.instCategoryCofilteredInitialModel
Mathlib.CategoryTheory.Filtered.FinallySmall
(C : Type u) β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ [inst_1 : CategoryTheory.IsCofiltered C] β†’ [inst_2 : CategoryTheory.LocallySmall.{w, v, u} C] β†’ [inst_3 : CategoryTheory.InitiallySmall C] β†’ CategoryTheory.Category.{w, w} (CategoryTheory.InitiallySmall.CofilteredInitialModel C)
finSuccEquiv'_symm_coe_below
Mathlib.Logic.Equiv.Fin.Basic
βˆ€ {n : β„•} {i : Fin (n + 1)} {m : Fin n}, m.castSucc < i β†’ (finSuccEquiv' i).symm (some m) = m.castSucc
Algebra.Generators.H1Cotangent.Ξ΄
Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u₁} β†’ {S : Type uβ‚‚} β†’ [inst : CommRing R] β†’ [inst_1 : CommRing S] β†’ [inst_2 : Algebra R S] β†’ {T : Type u₃} β†’ [inst_3 : CommRing T] β†’ [inst_4 : Algebra R T] β†’ [inst_5 : Algebra S T] β†’ [IsScalarTower R S T] β†’ {ΞΉ : Type w₁} β†’ {Οƒ : Type wβ‚‚} β†’ (Q : Algebra.Generators S T ΞΉ) β†’ Algebra.Generators R S Οƒ β†’ Q.toExtension.H1Cotangent β†’β‚—[T] TensorProduct S T Ξ©[S⁄R]
Option.map_min
Init.Data.Option.Lemmas
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : Min Ξ±] [inst_1 : Min Ξ²] {o o' : Option Ξ±} {f : Ξ± β†’ Ξ²}, (βˆ€ (x y : Ξ±), f (x βŠ“ y) = f x βŠ“ f y) β†’ Option.map f (o βŠ“ o') = Option.map f o βŠ“ Option.map f o'
Ideal.quotientMap.eq_1
Mathlib.RingTheory.Ideal.Quotient.Operations
βˆ€ {R : Type u} [inst : Ring R] {S : Type v} [inst_1 : Ring S] {I : Ideal R} (J : Ideal S) [inst_2 : I.IsTwoSided] [inst_3 : J.IsTwoSided] (f : R β†’+* S) (hIJ : I ≀ Ideal.comap f J), Ideal.quotientMap J f hIJ = Ideal.Quotient.lift I ((Ideal.Quotient.mk J).comp f) β‹―
TopHom.map_top'
Mathlib.Order.Hom.Bounded
βˆ€ {Ξ± : Type u_6} {Ξ² : Type u_7} [inst : Top Ξ±] [inst_1 : Top Ξ²] (self : TopHom Ξ± Ξ²), self.toFun ⊀ = ⊀
inf_lt_right
Mathlib.Order.Lattice
βˆ€ {Ξ± : Type u} [inst : SemilatticeInf Ξ±] {a b : Ξ±}, a βŠ“ b < b ↔ Β¬b ≀ a
_private.Lean.Meta.Check.0.Lean.Meta.addPPExplicitToExposeDiff.visit.match_24
Lean.Meta.Check
(motive : DoResultPR (Lean.Expr Γ— Lean.Expr) (Lean.Expr Γ— Lean.Expr) PUnit.{1} β†’ Sort u_1) β†’ (r : DoResultPR (Lean.Expr Γ— Lean.Expr) (Lean.Expr Γ— Lean.Expr) PUnit.{1}) β†’ ((a : Lean.Expr Γ— Lean.Expr) β†’ (u : PUnit.{1}) β†’ motive (DoResultPR.pure a u)) β†’ ((b : Lean.Expr Γ— Lean.Expr) β†’ (u : PUnit.{1}) β†’ motive (DoResultPR.return b u)) β†’ motive r
Mathlib.Tactic.RingNF.Config._sizeOf_inst
Mathlib.Tactic.Ring.RingNF
SizeOf Mathlib.Tactic.RingNF.Config
Action.forget_Ξ΅
Mathlib.CategoryTheory.Action.Monoidal
βˆ€ (V : Type u_1) [inst : CategoryTheory.Category.{v_1, u_1} V] (G : Type u_2) [inst_1 : Monoid G] [inst_2 : CategoryTheory.MonoidalCategory V], CategoryTheory.Functor.LaxMonoidal.Ξ΅ (Action.forget V G) = CategoryTheory.CategoryStruct.id (CategoryTheory.MonoidalCategoryStruct.tensorUnit V)